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The New Electric Paradigm
The electric system has been subject to major innovations and changes:

with more local and distributed actors:

I local PV intermittent production;
I large energy amounts from electric vehicles;

new means of communication (Linky, 5G) enabling to optimize the system;
local operations/computations possible with smart meters/schedulers;
consumption (flexibilities) considered as a variable in the optimization of the
electric system!

Demand Response: techniques to exploit consumers flexibilities
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Aggregation and optimization of flexibilities
Flexibility aggregators: intermediaries between end-users and the system operator

aggregate a large number of negligible flexibilities offered by end-users
valuate them on the market or as a service offered to system operators;

aggregator

1

2

N

System
Operator

Electricity
Market
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time horizon as a finite set T = {1, . . . ,T};

set of elec consumers N = {1, . . . ,N} with flexible appliances ;

each n ∈ N has a feasibility set Xn of consumption profiles (xn,t)t∈T ,
typically Xn

def=
{
xn∈RT |

∑
t xn,t =En and ∀t, xn,t≤xn,t≤ xn,t

}
.
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Aggregator’s problem:
large dimension;
involving local decisions;
decentralized and private information;

min
x∈RN×T, p∈Rk

f (p, x)

(p, x) ∈ P
xn ∈ Xn, ∀n ∈ N

Distributed Optimization Game Theory
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Contributions of the thesis

Decentralized Management of Flexibilities and Optimization
1 Privacy-preserving Disaggregation for Optimal Resource Allocation

Decentralized Management of Flexibilities and Game Theory
2 Two billing mechanisms for Demand Response: Efficiency and Fairness
3 Analysis of an Hourly Billing Mechanism for Demand Response
4 Impact of Consumers Temporal Preferences in Demand Response

Efficient Estimation of Equilibria in Large Games
5 Estimation of Equilibria of Large Heterogeneous Congestion Games
6 Nonatomic Aggregative Games with Infinitely Many Types

Decentralized Energy Exchanges in a Peer to Peer Framework
7 A p2p Electricity Market Analysis based on Generalized Nash Equilibrium
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Part I

Privacy-preserving Decentralized Optimization of
Flexibilities
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Problem Formulation

min
x∈RN×T, p∈RT

f (p) (1a)

p ∈ P operator constraints

(1b)

∑
n∈N

xn,t = pt , ∀t ∈ T disaggregation

(1c)

xn ∈ Xn, ∀n ∈ N

Private

agents constraints

(1d)

with Xn
def=
{
xn∈RT |

∑
t xn,t =En and ∀t, xn,t≤xn,t≤xn,t

}

How to optimize (1) while keeping private (xn)n and (Xn)n ?
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Two subproblems

Our method considers two subproblems iteratively:

Master Problem

min
p∈RT

f (p)

s.t. p ∈ P(s) ,

where P(s) ⊂ P

Disaggregation Problem

Find x = (xn)n∈N ∈ Yp(s) ∩X

where Yp(s)
def= {y ∈ RNT |

∑
n∈N

yn = p(s)}

and X def=
∏

n∈N
Xn .

p(s)

P(s+1)

until Disaggregation Problem is feasible.
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Disaggregation Feasibility

Hoffman Circulation’s Theorem:
Disaggregation is feasible (i.e. X ∩ Yp 6= ∅) iff for any T0 ⊂ T ,N0 ⊂ N :∑

t /∈T0

pt ≤
∑

t /∈T0,n∈N0

xn,t −
∑

t∈T0,n/∈N0

xn,t +
∑

n/∈N0

En. ( HT0,N0)

Theorem (Jacquot, Beaude, Benchimol, Gaubert, and Oudjane, 2019)
If disaggregation is not feasible, it is possible to recover a violated Hoffman cut
HT0,N0 by only local and privacy-preserving operations.
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Alternate Projections Algorithm

X =
∏

n Xn and Y = Yp = {x ∈ RNT |
∑

n∈N xn = p}

Require: y (0), k = 0 , εcvg, ‖.‖
repeat

x(k+1) ← PX (y (k))
y (k+1) ← PY(x(k+1))
k ← k + 1

until
∥∥∥y (k) − y (k−1)

∥∥∥ < εcvg

Y

X

x(0)
•

y (0)

x(1)

y (1)

x∞

y∞

Gubin & Polyak (67): If X and Y are convex with X bounded, then:
x(k) −→

k→∞
x∞∈X and y (k) −→

k→∞
y∞∈ Y, with: ‖x∞− y∞‖2 = min

x∈X ,y∈Y
‖x − y‖2.
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x(k) −→

k→∞
x∞∈X and y (k) −→

k→∞
y∞∈ Y, with: ‖x∞− y∞‖2 = min

x∈X ,y∈Y
‖x − y‖2.
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Alternate Projections Algorithm
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Theorem (Jacquot, Beaude, Benchimol, Gaubert, and Oudjane, 2019)

For the sets X and Y defined above, the two subsequences of APM (x(k))k and
(y (k))k converge at a geometric rate to x∞ ∈ X , y∞ ∈ Y, with:

‖x(k)− x∞‖2≤2‖x(0)− x∞‖2 ×
(

1− 4
N(T + 1)2(T − 1)

)k
,

and the same inequalities hold for the convergence of y (k) to y∞.

Proof:
rely on the notion of Friedrich angle between facets of X and Y,
consider matricial representation of these facets with positive matrices,
then use spectral graph theory arguments to bound the cosine of the angle.
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Theorem (Jacquot, Beaude, Benchimol, Gaubert, and Oudjane, 2019)
For the sets X and Y defined above, and if X ∩ Y = ∅ , the following sets given
by the limit APM orbit (x∞, y∞):

T0
def= {t|pt >

∑
n∈N x∞n,t} and N0

def= {n |En −
∑

t /∈T0 xn,t −
∑

t∈T0 xn,t < 0}

define the cut HT0,N0 that is violated by p, that is:∑
n∈N0

En +
∑

t∈T0,n/∈N0

xn,t −
∑

t /∈T0,n∈N0

xn,t <
∑
t∈T0

pt . (3)

The cut HT0,N0 can be reformulated in terms of aggregate
∑

n∈N x∞n as:∑
t∈T0

pt ≤ AT0 with AT0
def=
∑
t∈T0

∑
n∈N

x∞n,t .

I use SMC

(4)

Proposition (Jacquot, Beaude, Benchimol, Gaubert, and Oudjane, 2019)
The cut HT0,N0 can be obtained after a finite number of APM iterations.
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Benchmarks: MILP model for management of a microgrid

min
x∈RN×T, p∈RT

f (p)

p ∈ P∑
n xn,t = pt , ∀t

xn ∈ Xn .

≡

min
p,pg ,(pg

k ),(bk ),bon,bst

∑
t∈T

(
α1bon

t +
∑

k ckpg
k t + C stbst

t

)
pg

t =
∑K

k=1 pg
k,t , ∀t ∈ T

bk,t(θk−θk−1) ≤ pg
k,t≤ bk−1,t(θk−θk−1), ∀1≤k≤K , ∀t

bst
t ≥ bon

t − bon
t−1, ∀t ∈ {2, . . . ,T}

pg bon
t ≤ pg

t ≤ pg bon
t , ∀t ∈ T

bon
t , bst

t , b1,t , . . . , bK−1,t ∈ {0, 1}, ∀t ∈ T
p ≤ ppv + pg∑

t pt =
∑

n En∑
n xn,t ≤ pt ≤

∑
n xn,t∑

n∈N xn,t = pt , ∀t ∈ T
xn ∈ Xn .

T = 24
I 224 > 1, 6× 107

possible Hoffman cuts

N = 24 25 26 27 28

# master 193.6 194.1 225.5 210.9 194.0
# projs. 9507 15367 24319 26538 26646
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Part II

Game Theory and Decentralized Management of
Flexibilities

Paulin Jacquot (EDF - Inria - CMAP) Thursday, December 5, 2019 14 / 40



Why considering a Game Theory approach?

individual agents (elec consumers) make consumption decisions based on
price incentives and personal utilities,

individual decisions have an impact on the system level,

adopting a decentralized point of view: information kept locally by
consumers (privacy).
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Electricity Consumers Congestion Game
time horizon as a finite set T = {1, . . . ,T};

set of elec consumers N = {1, . . . ,N} with flexible appliances ;

each n ∈ N has a feasibility set Xn of consumption profiles (xn,t)t∈T

e.g. Xn
def=
{
xn∈RT |

∑
t xn,t =En and ∀t, xn,t≤xn,t≤ xn,t

}
.

for each t, aggregator has a per-unit energy price function Xt 7→ ct(Xt),
function of aggregated demand Xt

def=
∑

m∈N xm,t provided to consumers;

each n ∈ N minimizes the bill
bn(xn, x−n) def=

∑
t∈T

xn,tct(Xt) with xn ∈ Xn;
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}
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for each t, aggregator has a per-unit energy price function Xt 7→ ct(Xt),
function of aggregated demand Xt

def=
∑

m∈N xm,t provided to consumers;
Examples:
I minimize distance to target profile (Qt)t∈T bid on elec market
I minimizing production costs with self production.

each n ∈ N minimizes the bill
bn(xn, x−n) def=

∑
t∈T

xn,tct(Xt) with xn ∈ Xn;
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Nash Equilibrium: Existence

Nash Equilibrium x̂ I relevant solution concept in games

∀n∈N ,∀xn∈Xn, bn(x̂n, x̂−n) ≤ bn(xn, x̂−n) ⇐⇒ x̂n ∈ argmin
xn∈Xn

bn(xn, x̂−n)

Assumption
For each t ∈ T , ct(.) is smooth (D2), convex and strictly increasing.

Example: affine prices ∀t ∈ T , ct(x) = αt + βtx with αt , βt ∈ (R∗+)2 .

Assumption
Xn is a convex and compact subset of RT .

Rosen (65): In a game satisfying the above assumptions, there exists an NE.
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Nash Equilibrium Uniqueness conditions

Proposition (Jacquot, Beaude, Gaubert, and Oudjane, 2017)
If 2|c ′t(Xt)| > ‖xt‖2 |c ′′t (Xt)| for each t ∈ T and each feasible x ∈ X , then an NE
is unique.

Idea: use matrix eigenvalues inequalities to obtain strict monotonicity of operator
F̂ : x 7→

(
∇xn bn(xn, x−n)

)
n =

(
[xn,tc ′t(Xt) + ct(Xt)]t

)
n, then apply Rosen

standard uniqueness result.
rm: convexity of prices or convexity of bn(., x−n) are not sufficient!

Proposition (Jacquot, Beaude, Gaubert, and Oudjane, 2017)
For the game defined above, with convex and strictly increasing prices (ct)t , and
Xn

def=
{∑

t∈T xn,t = En , xn,t ≤ xn,t ≤ xn,t ,∀t ∈ T
}

, there is a unique NE.

Idea: generalizes Orda’s result with bound constraints.
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Measuring sub-optimality: the price of Anarchy

Define the social cost as SC(x) def=
∑

n bn(x)

=
∑

t Xtct(Xt) .

A NE does not necessarily minimize the social cost!
If the social cost is high at the equilibrium, our system is inefficient!

Price of Anarchy:
PoA(G) =

supx∈XNE SC(x)
infx∈X SC(x) .

Can have a bound for specific price parameters to ensure efficiency ?
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Bounding the PoA in the affine case

Theorem (Jacquot, Beaude, Gaubert, and Oudjane, 2017)
With affine prices for each t, ct(Xt) = αt + βtXt with αt ≥ 0, βt > 0, we have:

PoA(G) ≤ 1 + 3
4 supt∈T

(
1 + αt

βt X̄t

)−1
−→

αt
βt X̄t
→ +∞

1

Theorem (polynomial prices,
Roughgarden (2015))
If for each t, ct is a polynomial
function with positive coefficients of
degree ≤ d, then
PoA(G) ≤

(
1+
√

d+1
2

)d+1
, and

PoA(G) ≤ 3
2 for affine prices.

rm: related result for arbitrary func-
tion with c ′′t /c ′t bounded ?
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Two decentralized algorithms

Best Response (BR)

/ Simultaneous Improving Response (SIR)

Require: x(0), stopping criteria,

γ

k ← 0
while not stopping criteria do

for n = 1 to N do
S(k)

n =
∑

m<n x(k+1)
m +

∑
m>n x(k)

m
done
k ← k + 1

done

rm: sequential/simultaneous: SIR can be parallelized, but not BR (divergence)!
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−n)
)

done
k ← k + 1

done

agg.

u1

u2

u3

uN

X(k) =
∑

n
x(k)

n

(ct )t , (Xt )t

(ct )t , (Xt )t

rm: sequential/simultaneous: SIR can be parallelized, but not BR (divergence)!
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(Fast) Convergence Results

Theorem (Jacquot, Beaude, Gaubert, and Oudjane, 2019)
With affine prices for each t, ct(Xt) = αt + βtXt with αt ≥ 0, βt > 0, the
sequence generated by BR converge to the NE x̂ with:

‖x(k) − x̂‖2 ≤ CN × 1√
k

Idea: G is a potential game I use results on block coordinate minimization.

Theorem (Jacquot, Beaude, Gaubert, and Oudjane, 2019)
If the operator F̂ (x) = (∇xn bn(x))n is a-strongly monotone on X , the sequence
generated by SIR converge to the NE x̂ with:

‖x̂ − x(k)‖2 < (1− a2

NM2 )k
∥∥∥x̂ − x(0)

∥∥∥
2

Idea: use Euclidean structure, ∇nbn Lipschitz and the strong monotonicity
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Online versus Offline procedure

Online procedure: consider forecast updates on parameters in a stochastic
environment:

I e.g. prices are determined by nonflexible load I need forecasts

Forecasts of nonflexible Demand
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Online procedure: compute NE on “receding horizons”
Start at t = 1
while t ≤ T do

Set new horizon T (t) = {t, t + 1, . . . ,T}

Get D forecast on T (t): D̂(t) def=
(
D̂(t)

s
)

t≤s≤T

Re-compute prices ct(.) for t ∈ T (t) with D̂
Compute NE x(t) on T (t)

for each user n ∈ N do
Realize computed profile on time t, x (t)

n,t

Update X (t+1)
n

def=
{

(xn,s)s>t | (x (t)
n,t , [xn,s ]s>t) ∈ X (t)

n
}

done
Wait for t + 1

done

Proposition (Jacquot, Beaude, Gaubert, and Oudjane, 2019)
Under NE uniqueness and in the limit of perfect forecasts, the obtained profile
(x (t)

n,t )n,t is an NE for the complete horizon {1, . . . ,T}.
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Online procedure achieves significant gains!
Cons. Scenario Social Cost Avg. Price Gain
Uncoordinated $ 1257.2 0.200 $/kWh —

Offline DR $ 1231.6 0.195 $/kWh 2.036%
Online DR $ 1131.1 0.180 $/kWh 10.03%

Perfect forecast DR $ 1075.2 0.171 $/kWh 14.47%
Optimal scenario $ 1056.8 0.169 $/kWh 15.94%
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Part III

Estimation of Equilibria of Large Heterogeneous
Congestion Games
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Atomic (splittable) congestion game G(A)

time horizon as a finite set T = {1, . . . ,T};

set of agents N = {1, . . . ,N} ;

each n ∈ N has a feasibility set Xn of (consumption) profiles (xn,t)t∈T ;

∀t, a cost function ct : R+ → R

function of the

average action: X = (X t)t
def=
( 1

N
∑

n xnt
)

t ∈ X =
{ 1

N
∑

n xn : x ∈ X
}

;

∀n ∈ N , an individual utility function un : Xn → R

player n has the cost function to minimize:

fn(xn,X) def=
∑

t xntct(X t)− un(xn)

a coupling constraint set A ⊂ RT defining constraint X ∈ A.
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Nash equilibrium

Assumption (A1)

(1) ∀t, ct is convex and non-decreasing on R+.
(2) ∀n, Xn is a convex and compact subset of RT

+ with nonempty relative interior.
(3) ∀n, un is concave on Xn.
(4) A is a convex closed set of RT , and X ∩A is nonempty.
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(2) ∀n, Xn is a convex and compact subset of RT

+ with nonempty relative interior.
(3) ∀n, un is concave on Xn.
(4) A is a convex closed set of RT , and X ∩A is nonempty.

Differentiable case:

Definition (NE (No coupling constraint ⇔ A = RT ))
Action profile x ∈ X is a Nash equilibrium (NE) if:

∀n ∈ N , fn
(
xn,

1
N xn + X−n) ≤ fn(yn,

1
N xn + X−n) , ∀yn ∈ Xn

⇐⇒ 〈F̂ (x), y − x〉 ≥ 0 , ∀y ∈ X ,

with [F̂ (x)]n
def= ∇xn fn(xn,X) = c(X) + ( xnt

N c ′t(X t))t −∇un(xn)
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(3) ∀n, un is concave on Xn.
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Differentiable case:

Definition (VNE (With coupling constraint))

Profile x ∈ X (A) def= {x ∈ X | X ∈ A} is a Variational Nash Equilibrium (VNE):

〈F̂ (x), y − x〉 ≥ 0 , ∀y ∈ X (A),
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Two steps of Approximation: G(A) −→ Gna(A) −→ GI(A)

Initial game

G(A)

VNE x̂ in dim RNT

Nonatomic game

Gna(A)

SVWE x∗ in dim RNT

neglect individual
impact on average

action X

Aggregate game

GI(A)

SVWE x in dim RpT

reduce dimension by
clustering similar

players
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Fisrt step: Associated nonatomic game Gna(A) and SVWE
I each atomic player n∈N of G(A) →population of nonatomic players in Gna(A)

I symmetric action profiles: in Gna(A), all players in each population n play the
same action xn.

Definition
Action profile x∈X (A) def= {x ∈ X | X ∈ A} is a symmetric variational Wardrop
equilibrium (SVWE) if

〈F (x), y − x〉 ≥ 0 , ∀y ∈ X (A)
with [F (x)]n

def= ∇1fn(xn,X) = c(X)−∇un(xn)

Proposition (Existence of VNE and SVWE)

Under A1, G(A) (resp. Gna(A)) admits a VNE (resp. SVWE).
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First step of approximation: G(A) −→ Gna(A)

Theorem (Jacquot, Wan, Beaude, and Oudjane, 2018)
Under A1, let x∈X (A) be a VNE of G(A) and x∗∈X (A) a SVWE of Gna(A):

1 if for each n ∈ N , un is a α-strongly concave (α > 0) then x∗ is unique and:

‖x − x∗‖ ≤ MC
α

√
T
N , where M def= max

x∈cv(∪nXn)
t∈T

|xt |; C = max
X∈X
t∈T

|c ′t(X t)|

besides, 1
N
∑

n
‖xn − x∗n‖ ≤ MC

α

√
T

N and ‖X − X∗‖ ≤ MC
α

√
T

N ;

2 if (ct)t∈T is β-strongly monotone (β > 0) then X∗ is unique and:
‖X − X∗‖ ≤ M

√
2TC
βN .

Idea: use the VI charac of VNE/SVWE I difference lying in individual impact

Paulin Jacquot (EDF - Inria - CMAP) Thursday, December 5, 2019 32 / 40



First step of approximation: G(A) −→ Gna(A)

Theorem (Jacquot, Wan, Beaude, and Oudjane, 2018)
Under A1, let x∈X (A) be a VNE of G(A) and x∗∈X (A) a SVWE of Gna(A):

1 if for each n ∈ N , un is a α-strongly concave (α > 0) then x∗ is unique and:

‖x − x∗‖ ≤ MC
α

√
T
N , where M def= max

x∈cv(∪nXn)
t∈T

|xt |; C = max
X∈X
t∈T

|c ′t(X t)|

besides, 1
N
∑

n
‖xn − x∗n‖ ≤ MC

α

√
T

N and ‖X − X∗‖ ≤ MC
α

√
T

N ;

2 if (ct)t∈T is β-strongly monotone (β > 0) then X∗ is unique and:
‖X − X∗‖ ≤ M

√
2TC
βN .

Idea: use the VI charac of VNE/SVWE I difference lying in individual impact

Paulin Jacquot (EDF - Inria - CMAP) Thursday, December 5, 2019 32 / 40



First step of approximation: G(A) −→ Gna(A)

Theorem (Jacquot, Wan, Beaude, and Oudjane, 2018)
Under A1, let x∈X (A) be a VNE of G(A) and x∗∈X (A) a SVWE of Gna(A):

1 if for each n ∈ N , un is a α-strongly concave (α > 0) then x∗ is unique and:

‖x − x∗‖ ≤ MC
α

√
T
N , where M def= max

x∈cv(∪nXn)
t∈T

|xt |; C = max
X∈X
t∈T

|c ′t(X t)|

besides, 1
N
∑

n
‖xn − x∗n‖ ≤ MC

α

√
T

N and ‖X − X∗‖ ≤ MC
α

√
T

N ;

2 if (ct)t∈T is β-strongly monotone (β > 0) then X∗ is unique and:
‖X − X∗‖ ≤ M

√
2TC
βN .
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Second step: Clustering of populations in Gna(A) → GI(A)

Regroup similar populations of Gna(A) (i.e. Xn'Xm and ∇un'∇um) into a
set I of populations with small p def= |I| and

⋃
i∈I Ni =N and endow each

cluster i ∈ I with:
I a common action set Xi (within conv ∪n∈Ni Xn)
I a common utility (gradient) ∇ui (within maxn∈Ni ‖∇un‖∞) I common cost fi ;

similarity of players in Ni measured as:

for strategy sets (Xn)n∈Ni

δ = maxi∈I δi
where δi

def= maxn∈Ni dH (Xn,Xi )

for utility gradients (∇un)n∈Ni

λ = maxi∈I λi
where λi

def= max
n∈Ni

sup
x∈Xi

‖∇ui (x)−∇un(x)‖2

I symmetric profiles: all players in i play same action x i I X = 1
N
∑

i∈I Nix i
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Second step of approximation Gna(A) → GI(A)

Theorem (Jacquot, Wan, Beaude, and Oudjane, 2018)
Under A1, consider an approximating game GI(A) with δ small enough. Let x be a
SVWE of GI(A), and x∗ a SVWE of Gna(A). Then:

1 if ∀n, un is α-strongly concave (α > 0), then x∈ RTp and x∗∈ RTN are unique and

‖ψI→N (x)− x∗‖ ≤
√

N err(δ,λ)
α where err(δ, λ) def= 2TM

(
3 Lf
ρ δ + λ

)
−→
δ,λ→0

0

1
N
∑

i
∑

n∈Ni
‖x i − x∗n‖ ≤

√
err(δ,λ)
α and ‖X − X∗‖ ≤

√
err(δ,λ)
α ;

2 if (ct)t∈T is β-strongly monotone (β > 0) then X and X∗ are unique, and:

‖X − X∗‖ ≤
√

err(δ,λ)
β .
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Application to DR and EV smart charging

T = {1, . . . ,T}, T = 24: from 10 pm to 9pm the day after
electricity prices on each t ∈ T : ct ≡ c:
inclining block-rates (IBR) tariffs: pcw affine and convex functions:

c(X ) =


1 + 200X if X ≤ 0.25 ,
−49 + 400X if 0.25 ≤ X ≤ 0.25 ,
−349 + 1000X if 0.5 ≤ X .

N = 2000 consumers
I demand constraints: Xn =

{
xn ∈ RT

+ :
∑

t xnt =En and xnt ≤ xnt ≤ xnt
}

where En: total energy needed by n and xnt , xnt are (physical) power bounds ;
I utility functions

un(xn) = −ωn ‖xn − yn‖
2
.

Coupling constraints on average demand X : X t ≤ 0.7, ∀t
−0.025 ≤ X T − X 1 ≤ 0.025 .
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I simul number of clusters p ∈ {5, 10, 20, 50, 100} I use k-means algo.

Relative error
to actual VNE

Convergence of the agg. SVWE
profile to agg. VNE

Time to
compute SVWE.

Time to compute a VNE of G(A) with the same stopping criterion: 3 h 26”
→ six times longer than the CPU time to compute the SVWE with p = 100.

Paulin Jacquot (EDF - Inria - CMAP) Thursday, December 5, 2019 36 / 40



I simul number of clusters p ∈ {5, 10, 20, 50, 100} I use k-means algo.

Relative error
to actual VNE

Convergence of the agg. SVWE
profile to agg. VNE

Time to
compute SVWE.

Time to compute a VNE of G(A) with the same stopping criterion: 3 h 26”
→ six times longer than the CPU time to compute the SVWE with p = 100.

Paulin Jacquot (EDF - Inria - CMAP) Thursday, December 5, 2019 36 / 40



I simul number of clusters p ∈ {5, 10, 20, 50, 100} I use k-means algo.

Relative error
to actual VNE

Convergence of the agg. SVWE
profile to agg. VNE

Time to
compute SVWE.

Time to compute a VNE of G(A) with the same stopping criterion: 3 h 26”
→ six times longer than the CPU time to compute the SVWE with p = 100.

Paulin Jacquot (EDF - Inria - CMAP) Thursday, December 5, 2019 36 / 40



Conclusion
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Various contributions on Distributed Optimization and Game Theory for
Decentralized Electric Systems and Demand Response:

models analysis, theoretical and numerical results:

I evaluate efficiency and better understand potential benefits and issues of
flexibilities and DR
algorithmic results

I operational algorithmic methods to use for decentralized systems

other applications of the results in transports, telecoms, internet, logistics.

(Some) Open theoretical questions:
convergence bounds on disaggregation algo (number of cuts);
convergence of BR in the monotone case (extending potential case);
algo aspects of the computation of monotone GVI (chapter 6).

Prospective questions:
bilevel/Stackelberg models,
dynamic, repeated games and MFG,
electrical network modeling.
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Issues: transmission of profiles for projection: SMC
In APM, agents still have to provide profiles (x(k)

n )n
→ Secure Multiparty Computation (SMC) principle
Require: Each agent has a profile (xn)n∈N

1: for each agent n ∈ N do
2: Draw ∀t, (sn,t,m)N−1

m=1∈U([0,A]N−1)
3: and set ∀t, sn,t,N

def= xn,t −
∑N−1

m=1 sn,t,m
4: Send (sn,t,m)t∈T to agent m ∈ N
5: done
6: for each agent n ∈ N do
7: Compute ∀t, σn,t =

∑
m∈N sm,t,n

8: Send (σn,t)t∈T to operator
9: done

10: Operator computes S =
∑

n∈N σn
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∑
m∈N sm,t,n

8: Send (σn,t)t∈T to operator
9: done

10: Operator computes S =
∑

n∈N σn

x1 = s1,1 + s1,2 + s1,3

x2 = s2,1 + s2,2 + s2,3

x3 = s3,1 + s3,2 + s3,3
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1: for each agent n ∈ N do
2: Draw ∀t, (sn,t,m)N−1

m=1∈U([0,A]N−1)
3: and set ∀t, sn,t,N

def= xn,t −
∑N−1

m=1 sn,t,m
4: Send (sn,t,m)t∈T to agent m ∈ N
5: done
6: for each agent n ∈ N do
7: Compute ∀t, σn,t =

∑
m∈N sm,t,n

8: Send (σn,t)t∈T to operator
9: done

10: Operator computes S =
∑

n∈N σn

x1 = s1,1 + s1,2 + s1,3

x2 = s2,1 + s2,2 + s2,3

x3 = s3,1 + s3,2 + s3,3∑
n

xn = σ1 + σ2 + σ3
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Extension of NE estimation in unsplittable case

I VI characterization of NE in atomic unsplittable case ?
Game with resources T = {1, . . . ,T} and ∀n,Xn = {e1, . . . , , eKn} ⊂ 2T ,

∀n, ∀en = (en,t)t∈T ∈ Xn, fn(en, e−n) =
∑
t∈en

ct(e) =
∑
t∈en

ct(
∑

m:t∈em 1)

I consider mixed strategies xn ∈ 4Xn :
x̂ is a mixed NE iff

〈GV (x̂), x − x̂〉 ≥ 0, ∀x ∈ X

where GV (x) =
(
GVn(x−n)

)
n, with GVn(x−n) the multilinear extension of fn:

[GVn(x−n)]en
def=
∑

e1∈X1

. . .
∑

eN∈Xn

xe1 . . . xen−1xen+1 . . . xeN fn(e1, . . . , en−1, en, en+1, . . . , eN).

I Coupling constraint I Which signification with mixed strategies ??
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Wardrop formulation: flow vs cost functions

I consider nonatomic aggregative game (Θ, (fθ)θ, (Xθ)θ)

WE: x∗ s.t. ∀a.e.θ, ∀xθ ∈ Xθ, fθ(x∗θ,X
∗) ≤ fθ(xθ,X∗)

congestion case: if Xθ = {xθ ∈ 4T−1} ⊂ RT and fθ(xθ,X) =
∑

t xθ,tct(Xt)
then:

x∗is a WE iff xθ,t > 0⇒ ct(Xt) ≤ cs(Xs) ∀s ∈ T

but in a arbitrary aggretative game, (xθ,X) 7→ fθ(xθ,X) is not linear in xθ
I optimality conditions will depend on the player’s actions xθ and not only on
flow X .
I consider linear agg. games to keep flow formulation ?

Paulin Jacquot (EDF - Inria - CMAP) Thursday, December 5, 2019 43 / 40



Kalai: semi-anonymous games

Bayesian games: payoff µi (ci , c−i ) depends on the distribution of players that
choose c−i = k
I similarity to our model → dependency of costs on the average term (X t)t
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