Game theory and Optimization Methods for Decentralized Electric Systems

Paulin Jacquot

EDF Lab Saclay, Inria and CMAP, École polytechnique
Thursday, December 5, 2019

Soutenance de thèse présentée à l'École polytechnique, Palaiseau, France.

The New Electric Paradigm

The electric system has been subject to major innovations and changes:

The New Electric Paradigm

The electric system has been subject to major innovations and changes:

- with more local and distributed actors:

The New Electric Paradigm

The electric system has been subject to major innovations and changes:

- with more local and distributed actors:
- local PV intermittent production;

The New Electric Paradigm

The electric system has been subject to major innovations and changes:

- with more local and distributed actors:
- local PV intermittent production;
- large energy amounts from electric vehicles;

The New Electric Paradigm

The electric system has been subject to major innovations and changes:

- with more local and distributed actors:
- local PV intermittent production;
- large energy amounts from electric vehicles;
- new means of communication (Linky, 5G) enabling to optimize the system;

The New Electric Paradigm

The electric system has been subject to major innovations and changes:

- with more local and distributed actors:
- local PV intermittent production;
- large energy amounts from electric vehicles;
- new means of communication (Linky, 5G) enabling to optimize the system;
- local operations/computations possible with smart meters/schedulers;

The New Electric Paradigm

The electric system has been subject to major innovations and changes:

- with more local and distributed actors:
- local PV intermittent production;
- large energy amounts from electric vehicles;
- new means of communication (Linky, 5G) enabling to optimize the system;
- local operations/computations possible with smart meters/schedulers;
- consumption (flexibilities) considered as a variable in the optimization of the electric system!

The New Electric Paradigm

The electric system has been subject to major innovations and changes:

- with more local and distributed actors:
- local PV intermittent production;
- large energy amounts from electric vehicles;
- new means of communication (Linky, 5G) enabling to optimize the system;
- local operations/computations possible with smart meters/schedulers;
- consumption (flexibilities) considered as a variable in the optimization of the electric system!

Demand Response: techniques to exploit consumers flexibilities

Aggregation and optimization of flexibilities

Flexibility aggregators: intermediaries between end-users and the system operator

- aggregate a large number of negligible flexibilities offered by end-users
- valuate them on the market or as a service offered to system operators;

- time horizon as a finite set $\mathcal{T}=\{1, \ldots, T\}$;
- time horizon as a finite set $\mathcal{T}=\{1, \ldots, T\}$;
- set of elec consumers $\mathcal{N}=\{1, \ldots, N\}$ with flexible appliances ;
- time horizon as a finite set $\mathcal{T}=\{1, \ldots, T\}$;
- set of elec consumers $\mathcal{N}=\{1, \ldots, N\}$ with flexible appliances ;
- each $n \in \mathcal{N}$ has a feasibility set \mathcal{X}_{n} of consumption profiles $\left(x_{n, t}\right)_{t \in \mathcal{T}}$,
- time horizon as a finite set $\mathcal{T}=\{1, \ldots, T\}$;
- set of elec consumers $\mathcal{N}=\{1, \ldots, N\}$ with flexible appliances ;
- each $n \in \mathcal{N}$ has a feasibility set \mathcal{X}_{n} of consumption profiles $\left(x_{n, t}\right)_{t \in \mathcal{T}}$, typically $\mathcal{X}_{n} \stackrel{\text { def }}{=}\left\{\boldsymbol{x}_{n} \in \mathbb{R}^{T} \mid \sum_{t} x_{n, t}=E_{n} \quad\right.$ and $\left.\quad \forall t, \underline{x}_{n, t} \leq x_{n, t} \leq \bar{x}_{n, t}\right\}$.
- time horizon as a finite set $\mathcal{T}=\{1, \ldots, T\}$;
- set of elec consumers $\mathcal{N}=\{1, \ldots, N\}$ with flexible appliances ;
- each $n \in \mathcal{N}$ has a feasibility set \mathcal{X}_{n} of consumption profiles $\left(x_{n, t}\right)_{t \in \mathcal{T}}$, typically $\mathcal{X}_{n} \stackrel{\text { def }}{=}\left\{\boldsymbol{x}_{n} \in \mathbb{R}^{T} \mid \sum_{t} x_{n, t}=E_{n} \quad\right.$ and $\left.\quad \forall t, \underline{x}_{n, t} \leq x_{n, t} \leq \bar{x}_{n, t}\right\}$.

Aggregator's problem:

- large dimension;
- involving local decisions;
- decentralized and private information;

$$
\begin{aligned}
& \min _{\substack{x \in \mathbb{R}^{N \times T}, \boldsymbol{p} \in \mathbb{R}^{k}}} f(\boldsymbol{p}, \boldsymbol{x}) \\
& (\boldsymbol{p}, \boldsymbol{x}) \in \mathcal{P} \\
& \boldsymbol{x}_{n} \in \mathcal{X}_{n}, \forall n \in \mathcal{N}
\end{aligned}
$$

- time horizon as a finite set $\mathcal{T}=\{1, \ldots, T\}$;
- set of elec consumers $\mathcal{N}=\{1, \ldots, N\}$ with flexible appliances ;
- each $n \in \mathcal{N}$ has a feasibility set \mathcal{X}_{n} of consumption profiles $\left(x_{n, t}\right)_{t \in \mathcal{T}}$, typically $\mathcal{X}_{n} \stackrel{\text { def }}{=}\left\{\boldsymbol{x}_{n} \in \mathbb{R}^{T} \mid \sum_{t} x_{n, t}=E_{n} \quad\right.$ and $\left.\quad \forall t, \underline{x}_{n, t} \leq x_{n, t} \leq \bar{x}_{n, t}\right\}$.

Aggregator's problem:

- large dimension;
- involving local decisions;
- decentralized and private information;

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{N \times T}, \boldsymbol{p} \in \mathbb{R}^{k}} f(\boldsymbol{p}, \boldsymbol{x}) \\
& (\boldsymbol{p}, \boldsymbol{x}) \in \mathcal{P} \\
& \boldsymbol{x}_{n} \in \mathcal{X}_{n}, \forall n \in \mathcal{N}
\end{aligned}
$$

- time horizon as a finite set $\mathcal{T}=\{1, \ldots, T\}$;
- set of elec consumers $\mathcal{N}=\{1, \ldots, N\}$ with flexible appliances ;
- each $n \in \mathcal{N}$ has a feasibility set \mathcal{X}_{n} of consumption profiles $\left(x_{n, t}\right)_{t \in \mathcal{T}}$, typically $\mathcal{X}_{n} \stackrel{\text { def }}{=}\left\{\boldsymbol{x}_{n} \in \mathbb{R}^{T} \mid \sum_{t} x_{n, t}=E_{n} \quad\right.$ and $\left.\quad \forall t, \underline{x}_{n, t} \leq x_{n, t} \leq \bar{x}_{n, t}\right\}$.

Aggregator's problem:

- large dimension;
- involving local decisions;
- decentralized and private information;

$$
\begin{aligned}
& \min _{\substack{x \in \mathbb{R}^{N \times T}, \boldsymbol{p} \in \mathbb{R}^{k}}} f(\boldsymbol{p}, \boldsymbol{x}) \\
& (\boldsymbol{p}, x) \in \mathcal{P} \\
& x_{n} \in \mathcal{X}_{n}, \forall n \in \mathcal{N}
\end{aligned}
$$

- time horizon as a finite set $\mathcal{T}=\{1, \ldots, T\}$;
- set of elec consumers $\mathcal{N}=\{1, \ldots, N\}$ with flexible appliances ;
- each $n \in \mathcal{N}$ has a feasibility set \mathcal{X}_{n} of consumption profiles $\left(x_{n, t}\right)_{t \in \mathcal{T}}$, typically $\mathcal{X}_{n} \stackrel{\text { def }}{=}\left\{\boldsymbol{x}_{n} \in \mathbb{R}^{T} \mid \sum_{t} x_{n, t}=E_{n} \quad\right.$ and $\left.\quad \forall t, \underline{x}_{n, t} \leq x_{n, t} \leq \bar{x}_{n, t}\right\}$.

Aggregator's problem:

- large dimension;
- involving local decisions;
- decentralized and private information;

$$
\begin{aligned}
& \min _{\substack{x \in \mathbb{R}^{N \times T}, \boldsymbol{p} \in \mathbb{R}^{k}}} f(\boldsymbol{p}, \boldsymbol{x}) \\
& (\boldsymbol{p}, \boldsymbol{x}) \in \mathcal{P} \\
& \boldsymbol{x}_{n} \in \mathcal{X}_{n}, \forall n \in \mathcal{N}
\end{aligned}
$$

Contributions of the thesis

Decentralized Management of Flexibilities and Optimization
1 Privacy-preserving Disaggregation for Optimal Resource Allocation
Decentralized Management of Flexibilities and Game Theory
2 Two billing mechanisms for Demand Response: Efficiency and Fairness
3 Analysis of an Hourly Billing Mechanism for Demand Response
4 Impact of Consumers Temporal Preferences in Demand Response
Efficient Estimation of Equilibria in Large Games
5 Estimation of Equilibria of Large Heterogeneous Congestion Games
6 Nonatomic Aggregative Games with Infinitely Many Types
Decentralized Energy Exchanges in a Peer to Peer Framework 7 A p2p Electricity Market Analysis based on Generalized Nash Equilibrium

Contributions of the thesis

Decentralized Management of Flexibilities and Optimization 1 Privacy-preserving Disaggregation for Optimal Resource Allocation

Decentralized Management of Flexibilities and Game Theory 2 Two billing mechanisms for Demand Response: Efficiency and Fairness 3 Analysis of an Hourly Billing Mechanism for Demand Response
4 Impact of Consumers Temporal Preferences in Demand Response
Efficient Estimation of Equilibria in Large Games
5 Estimation of Equilibria of Large Heterogeneous Congestion Games
6 Nonatomic Aggregative Games with Infinitely Many Types
Decentralized Energy Exchanges in a Peer to Peer Framework 7 A p2p Electricity Market Analysis based on Generalized Nash Equilibrium

Part I

Privacy-preserving Decentralized Optimization of Flexibilities

Problem Formulation

$$
\begin{equation*}
\min _{\boldsymbol{x} \in \mathbb{R}^{N \times T}, \boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) \tag{1a}
\end{equation*}
$$

(1b)
(1c)
(1d)

Problem Formulation

$$
\begin{align*}
& \min _{x \in \mathbb{R}^{N \times T, \boldsymbol{p} \in \mathbb{R}^{T}}} f(\boldsymbol{p}) \tag{1a}\\
& \boldsymbol{p} \in \mathcal{P}
\end{align*}
$$

OPERATOR CONSTRAINTS

Problem Formulation

$$
\begin{array}{lr}
\min _{x \in \mathbb{R}^{N \times T}, \boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) \tag{1a}\\
\boldsymbol{p} \in \mathcal{P} \\
\sum_{n \in \mathcal{N}} x_{n, t}=p_{t}, \forall t \in \mathcal{T} & \\
\text { OPERATOR CONSTRAINTS }
\end{array}
$$

Problem Formulation

$$
\begin{align*}
& \min _{\substack{x \in \mathbb{R}^{\mathbb{N} \times T}, \boldsymbol{p} \in \mathcal{P} \in \mathbb{R}^{T}}} f(\boldsymbol{p}) \tag{1a}\\
& \sum_{n \in \mathcal{N}} x_{n, t}=p_{t}, \forall t \in \mathcal{T} \\
& \boldsymbol{x}_{n} \in \mathcal{X}_{n}, \forall n \in \mathcal{N}
\end{align*}
$$

OPERATOR CONSTRAINTS
DISAGGREGATION

Problem Formulation

$$
\begin{aligned}
& \min _{\boldsymbol{x} \in \mathbb{R}^{N \times T}, \boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) \\
& \boldsymbol{p} \in \mathcal{P} \\
& \sum_{n \in \mathcal{N}} x_{n, t}=p_{t}, \forall t \in \mathcal{T} \\
& \boldsymbol{x}_{n} \in \mathcal{X}_{n}, \forall n \in \mathcal{N} \quad \text { OPERATOR CONSTRAINTS } \\
& \text { with } \mathcal{X}_{n} \stackrel{\text { def }}{=}\left\{\boldsymbol{x}_{n} \in \mathbb{R}^{T} \mid \sum_{t} x_{n, t}=E_{n} \quad \text { and } \quad \forall t, \underline{x}_{n, t} \leq x_{n, t} \leq \bar{x}_{n, t}\right\}
\end{aligned}
$$

Problem Formulation

$$
\begin{array}{lr}
\min _{\substack{x \in \mathbb{R}^{\wedge \times T}, \boldsymbol{p} \in \mathbb{R}^{T}}} f(\boldsymbol{p}) & \\
\boldsymbol{p} \in \mathcal{P} \\
\sum_{n \in \mathcal{N}} x_{n, t}=p_{t}, \forall t \in \mathcal{T} & \text { OPERATOR CONSTRAINTS } \\
x_{n} \in \mathcal{X}_{n}, \forall n \in \mathcal{N} & \text { DISAGGREGATION } \\
\text { with } \mathcal{X}_{n} \stackrel{\text { def }}{=}\left\{\boldsymbol{x}_{n} \in \mathbb{R}^{T} \mid \sum_{t} x_{n, t}=E_{n} \text { and } \quad \forall t, \underline{x}_{n, t} \leq x_{n, t} \leq \bar{x}_{n, t}\right\}
\end{array}
$$

How to optimize (1) while keeping private $\left(x_{n}\right)_{n}$ and $\left(\mathcal{X}_{n}\right)_{n}$?

Two subproblems

Our method considers two subproblems iteratively:

Two subproblems

Our method considers two subproblems iteratively:

Master Problem

$$
\min _{\boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p})
$$

s.t. $\boldsymbol{p} \in \mathcal{P}^{(s)}$,
where $\mathcal{P}^{(s)} \subset \mathcal{P}$

Two subproblems

Our method considers two subproblems iteratively:

Master Problem

$$
\min _{\boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p})
$$

s.t. $\boldsymbol{p} \in \mathcal{P}^{(s)}$,
where $\mathcal{P}^{(s)} \subset \mathcal{P}$

Disaggregation Problem

$$
\begin{gathered}
\text { FIND } \boldsymbol{x}=\left(\boldsymbol{x}_{n}\right)_{n \in \mathcal{N}} \in \mathcal{Y}_{\boldsymbol{p}^{(s)}} \cap \mathcal{X} \\
\text { where } \mathcal{Y}_{\boldsymbol{p}^{(s)}} \stackrel{\text { def }}{=}\left\{\boldsymbol{y} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} \boldsymbol{y}_{n}=\boldsymbol{p}^{(s)}\right\} \\
\text { and } \mathcal{X} \stackrel{\text { def }}{=} \prod_{n \in \mathcal{N}} \mathcal{X}_{n} .
\end{gathered}
$$

Two subproblems

Our method considers two subproblems iteratively:

Master Problem

$$
\begin{aligned}
& \text { IASTER PROBLEM } \\
& \begin{array}{l}
\min _{\boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) \\
\text { s.t. } \boldsymbol{p} \in \mathcal{P}^{(s)}, \\
\text { where } \mathcal{P}^{(s)} \subset \mathcal{P}
\end{array} \quad \begin{array}{c}
\text { DisAGGREGATION PROBLEM }
\end{array} \\
& \text { Find } \boldsymbol{x}=\left(\boldsymbol{x}_{n}\right)_{n \in \mathcal{N}} \in \mathcal{Y}_{\boldsymbol{p}^{(s)} \cap \mathcal{X}} \cap \\
& \text { where } \mathcal{Y}_{\boldsymbol{p}^{(s)}} \stackrel{\text { def }}{=}\left\{\boldsymbol{y} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} \boldsymbol{y}_{n}=\boldsymbol{p}^{(s)}\right\} \\
& \text { and } \mathcal{X} \stackrel{\text { def }}{=} \prod_{n \in \mathcal{N}} \mathcal{X}_{n} .
\end{aligned}
$$

Two subproblems

Our method considers two subproblems iteratively:

Master Problem

$$
\begin{array}{ll}
\min _{\boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) & \stackrel{\boldsymbol{p}^{(s)}}{\rightleftarrows} \text { where } \mathcal{Y}_{\boldsymbol{p}^{(s)}} \stackrel{\text { def }}{=}\left\{\boldsymbol{y} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} \boldsymbol{y}_{n}=\boldsymbol{p}^{(s)}\right\} \\
\boldsymbol{p} \in \mathcal{P}^{(s)}, & \text { and } \mathcal{X} \stackrel{\text { def }}{=} \prod_{n \in \mathcal{N}} \mathcal{X}_{n} .
\end{array}
$$

Two subproblems

Our method considers two subproblems iteratively:

Master Problem

Disaggregation Problem

$$
\begin{aligned}
& \min _{\boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) \\
\text { s.t. } & \boldsymbol{p} \in \mathcal{P}^{(s)}, \\
\text { where } \mathcal{P}^{(s)} \subset \mathcal{P} & \stackrel{\boldsymbol{p}^{(s)}}{\rightleftarrows} \text { where } \mathcal{Y}_{\boldsymbol{p}^{(s)}} \stackrel{\text { Find } \boldsymbol{x}=\left(\boldsymbol{x}_{n}\right)_{n \in \mathcal{N}} \in \mathcal{Y}_{\boldsymbol{p}^{(s)}} \cap \mathcal{X}}{=}\left\{\boldsymbol{y} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} \boldsymbol{y}_{n}=\boldsymbol{p}^{(s)}\right\}
\end{aligned}
$$

until Disaggregation Problem is feasible.

Disaggregation Feasibility

Hoffman Circulation's Theorem:
Disaggregation is feasible (i.e. $\mathcal{X} \cap \mathcal{Y}_{\boldsymbol{p}} \neq \emptyset$) iff for any $\mathcal{T}_{0} \subset \mathcal{T}, \mathcal{N}_{0} \subset \mathcal{N}$:

$$
\sum_{t \notin \mathcal{T}_{0}} p_{t} \leq \sum_{t \notin \mathcal{T}_{0}, n \in \mathcal{N}_{0}} \bar{x}_{n, t}-\sum_{t \in \mathcal{T}_{0}, n \notin \mathcal{N}_{0}} \underline{x}_{n, t}+\sum_{n \notin \mathcal{N}_{0}} E_{n} . \quad\left(\mathfrak{H}_{\mathcal{T}_{0}, \mathcal{N}_{0}}\right)
$$

Disaggregation Feasibility

Hoffman Circulation's Theorem:
Disaggregation is feasible (i.e. $\mathcal{X} \cap \mathcal{Y}_{\boldsymbol{p}} \neq \emptyset$) iff for any $\mathcal{T}_{0} \subset \mathcal{T}, \mathcal{N}_{0} \subset \mathcal{N}$:

$$
\sum_{t \notin \mathcal{T}_{0}} p_{t} \leq \sum_{t \notin \mathcal{T}_{0}, n \in \mathcal{N}_{0}} \bar{x}_{n, t}-\sum_{t \in \mathcal{T}_{0}, n \notin \mathcal{N}_{0}} \underline{x}_{n, t}+\sum_{n \notin \mathcal{N}_{0}} E_{n} . \quad\left(\mathfrak{H}_{\mathcal{T}_{0}, \mathcal{N}_{0}}\right)
$$

Theorem (Jacquot, Beaude, Benchimol, Gaubert, and Oudjane, 2019)

If disaggregation is not feasible, it is possible to recover a violated Hoffman cut $\mathfrak{H}_{\mathcal{T}_{0}, \mathcal{N}_{0}}$ by only local and privacy-preserving operations.

Alternate Projections Algorithm

$$
\mathcal{X}=\prod_{n} \mathcal{X}_{n} \quad \text { and } \quad \mathcal{Y}=\mathcal{Y}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} \boldsymbol{x}_{n}=\boldsymbol{p}\right\}
$$

Require: $\boldsymbol{y}^{(0)}, k=0, \varepsilon_{\text {cug, }}\|$. repeat

$$
\begin{aligned}
& \boldsymbol{x}^{(k+1)} \leftarrow P_{\mathcal{X}}\left(\boldsymbol{y}^{(k)}\right) \\
& \left.\boldsymbol{y}^{(k+1)} \leftarrow P_{y} \boldsymbol{x}^{(k+1)}\right) \\
& k \leftarrow \overleftarrow{k+1} \\
& \text { untii }\left\|\boldsymbol{y}^{(k)}-\boldsymbol{y}^{(k-1)}\right\|<\varepsilon_{\text {cvg }}
\end{aligned}
$$

Alternate Projections Algorithm

$$
\mathcal{X}=\prod_{n} \mathcal{X}_{n} \quad \text { and } \quad \mathcal{Y}=\mathcal{Y}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} \boldsymbol{x}_{n}=\boldsymbol{p}\right\}
$$

Require: $\boldsymbol{y}^{(0)}, k=0, \varepsilon_{\text {cug, }}\|$. repeat

$$
\begin{gathered}
\boldsymbol{x}^{(k+1)} \leftarrow P_{\mathcal{X}}\left(\boldsymbol{y}^{(k)}\right) \\
\boldsymbol{y}^{(k+1)} \leftarrow P_{\mathcal{Y}}\left(\boldsymbol{x}^{(k+1)}\right) \\
k \leftarrow k+1 \\
\text { until }\left\|\boldsymbol{y}^{(k)}-\boldsymbol{y}^{(k-1)}\right\|<\varepsilon_{\mathrm{cvg}}
\end{gathered}
$$

Alternate Projections Algorithm

$$
\mathcal{X}=\Pi_{n} \mathcal{X}_{n} \quad \text { and } \quad \mathcal{Y}=\mathcal{Y}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} x_{n}=\boldsymbol{p}\right\}
$$

Require: $\boldsymbol{y}^{(0)}, k=0, \varepsilon_{\mathrm{cvg}},\|\cdot\|$ repeat

$$
\begin{gathered}
\boldsymbol{x}^{(k+1)} \leftarrow P_{\mathcal{X}}\left(\boldsymbol{y}^{(k)}\right) \\
\boldsymbol{y}^{(k+1)} \leftarrow P_{\mathcal{Y}\left(\boldsymbol{x}^{(k+1)}\right)} \\
k \leftarrow k+1 \\
\text { until }\left\|\boldsymbol{y}^{(k)}-\boldsymbol{y}^{(k-1)}\right\|<\varepsilon_{\mathrm{cvg}}
\end{gathered}
$$

Alternate Projections Algorithm

$$
\mathcal{X}=\Pi_{n} \mathcal{X}_{n} \quad \text { and } \quad \mathcal{Y}=\mathcal{Y}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} x_{n}=\boldsymbol{p}\right\}
$$

Require: $\boldsymbol{y}^{(0)}, k=0, \varepsilon_{\mathrm{cvg}},\|\cdot\|$ repeat

$$
\begin{gathered}
\boldsymbol{x}^{(k+1)} \leftarrow P_{\mathcal{X}}\left(\boldsymbol{y}^{(k)}\right) \\
\boldsymbol{y}^{(k+1)} \leftarrow P_{\mathcal{Y}\left(\boldsymbol{x}^{(k+1)}\right)} \\
k \leftarrow k+1 \\
\text { until }\left\|\boldsymbol{y}^{(k)}-\boldsymbol{y}^{(k-1)}\right\|<\varepsilon_{\mathrm{cvg}}
\end{gathered}
$$

Alternate Projections Algorithm

$$
\mathcal{X}=\Pi_{n} \mathcal{X}_{n} \quad \text { and } \quad \mathcal{Y}=\mathcal{Y}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} x_{n}=\boldsymbol{p}\right\}
$$

Require: $\boldsymbol{y}^{(0)}, k=0, \varepsilon_{\mathrm{cvg}},\|$. repeat

$$
\begin{gathered}
\boldsymbol{x}^{(k+1)} \leftarrow P_{\mathcal{X}}\left(\boldsymbol{y}^{(k)}\right) \\
\boldsymbol{y}^{(k+1)} \leftarrow P_{\mathcal{Y}}\left(\boldsymbol{x}^{(k+1)}\right) \\
k \leftarrow k+1 \\
\text { until }\left\|\boldsymbol{y}^{(k)}-\boldsymbol{y}^{(k-1)}\right\|<\varepsilon_{\mathrm{cvg}}
\end{gathered}
$$

Alternate Projections Algorithm

$$
\mathcal{X}=\prod_{n} \mathcal{X}_{n} \quad \text { and } \quad \mathcal{Y}=\mathcal{Y}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} \boldsymbol{x}_{n}=\boldsymbol{p}\right\}
$$

Require: $\boldsymbol{y}^{(0)}, k=0, \varepsilon_{\mathrm{cvg}},\|$. repeat

$$
\begin{gathered}
\boldsymbol{x}^{(k+1)} \leftarrow P_{\mathcal{X}}\left(\boldsymbol{y}^{(k)}\right) \\
\boldsymbol{y}^{(k+1)} \leftarrow P_{\mathcal{Y}}\left(\boldsymbol{x}^{(k+1)}\right) \\
k \leftarrow k+1 \\
\text { until }\left\|\boldsymbol{y}^{(k)}-\boldsymbol{y}^{(k-1)}\right\|<\varepsilon_{\mathrm{cvg}}
\end{gathered}
$$

Alternate Projections Algorithm

$$
\mathcal{X}=\prod_{n} \mathcal{X}_{n} \quad \text { and } \quad \mathcal{Y}=\mathcal{Y}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} \boldsymbol{x}_{n}=\boldsymbol{p}\right\}
$$

Require: $\boldsymbol{y}^{(0)}, k=0, \varepsilon_{\text {cug, }}\|$. repeat

$$
\begin{gathered}
\boldsymbol{x}^{(k+1)} \leftarrow P_{\mathcal{X}}\left(\boldsymbol{y}^{(k)}\right) \\
\boldsymbol{y}^{(k+1)} \leftarrow P_{\mathcal{Y}\left(\boldsymbol{x}^{(k+1)}\right)} \\
k \leftarrow k+1 \\
\text { until }\left\|\boldsymbol{y}^{(k)}-\boldsymbol{y}^{(k-1)}\right\|<\varepsilon_{\mathrm{cvg}}
\end{gathered}
$$

Alternate Projections Algorithm

$\mathcal{X}=\prod_{n} \mathcal{X}_{n} \quad$ and $\quad \mathcal{Y}=\mathcal{Y}_{p}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} \boldsymbol{x}_{n}=\boldsymbol{p}\right\}$

Require: $\boldsymbol{y}^{(0)}, k=0, \varepsilon_{\mathrm{cvg}},\|\cdot\|$ repeat

$$
\begin{gathered}
\boldsymbol{x}^{(k+1)} \leftarrow P_{\mathcal{X}}\left(\boldsymbol{y}^{(k)}\right) \\
\boldsymbol{y}^{(k+1)} \leftarrow P_{\mathcal{Y}\left(\boldsymbol{x}^{(k+1)}\right)} \\
k \leftarrow k+1 \\
\text { until }\left\|\boldsymbol{y}^{(k)}-\boldsymbol{y}^{(k-1)}\right\|<\varepsilon_{\mathrm{cvg}}
\end{gathered}
$$

Gubin \& Polyak (67): If \mathcal{X} and \mathcal{Y} are convex with \mathcal{X} bounded, then: $\boldsymbol{x}^{(k)} \underset{k \rightarrow \infty}{\longrightarrow} \boldsymbol{x}^{\infty} \in \mathcal{X}$ and $\boldsymbol{y}^{(k)} \underset{k \rightarrow \infty}{\longrightarrow} \boldsymbol{y}^{\infty} \in \mathcal{Y}$, with: $\left\|\boldsymbol{x}^{\infty}-\boldsymbol{y}^{\infty}\right\|_{2}=\min _{\boldsymbol{x} \in \mathcal{X}, \boldsymbol{y} \in \mathcal{Y}}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}$.

Theorem (Jacquot, Beaude, Benchimol, Gaubert, and Oudjane, 2019)

For the sets \mathcal{X} and \mathcal{Y} defined above, the two subsequences of $\operatorname{APM}\left(\boldsymbol{x}^{(k)}\right)_{k}$ and $\left(\boldsymbol{y}^{(k)}\right)_{k}$ converge at a geometric rate to $\boldsymbol{x}^{\infty} \in \mathcal{X}, \boldsymbol{y}^{\infty} \in \mathcal{Y}$, with:

$$
\left\|\boldsymbol{x}^{(k)}-\boldsymbol{x}^{\infty}\right\|_{2} \leq 2\left\|\boldsymbol{x}^{(0)}-\boldsymbol{x}^{\infty}\right\|_{2} \times\left(1-\frac{4}{N(T+1)^{2}(T-1)}\right)^{k}
$$

and the same inequalities hold for the convergence of $\boldsymbol{y}^{(k)}$ to \boldsymbol{y}^{∞}.

Theorem (Jacquot, Beaude, Benchimol

For the sets \mathcal{X} and \mathcal{Y} defined above, the two subsequences of $\operatorname{APM}\left(\boldsymbol{x}^{(k)}\right)_{k}$ and $\left(\boldsymbol{y}^{(k)}\right)_{k}$ converge at a geometric rate to $\boldsymbol{x}^{\infty} \in \mathcal{X}, \boldsymbol{y}^{\infty} \in \mathcal{Y}$, with:

$$
\left\|\boldsymbol{x}^{(k)}-\boldsymbol{x}^{\infty}\right\|_{2} \leq 2\left\|\boldsymbol{x}^{(0)}-\boldsymbol{x}^{\infty}\right\|_{2} \times\left(1-\frac{4}{N(T+1)^{2}(T-1)}\right)^{k}
$$

and the same inequalities hold for the convergence of $\boldsymbol{y}^{(k)}$ to \boldsymbol{y}^{∞}.

Proof:

- rely on the notion of Friedrich angle between facets of \mathcal{X} and \mathcal{Y},
- consider matricial representation of these facets with positive matrices,
- then use spectral graph theory arguments to bound the cosine of the angle.

Theorem (Jacquot, Beaude, Benchimol, Gaubert, and Oudjane, 2019)

For the sets \mathcal{X} and \mathcal{Y} defined above, and if $\mathcal{X} \cap \mathcal{Y}=\emptyset$, the following sets given by the limit APM orbit $\left(\boldsymbol{x}^{\infty}, \boldsymbol{y}^{\infty}\right)$:

Theorem (Jacquot, Beaude, Benchimol, Gaubert, and Oudjane, 2019)

For the sets \mathcal{X} and \mathcal{Y} defined above, and if $\mathcal{X} \cap \mathcal{Y}=\emptyset$, the following sets given by the limit APM orbit $\left(\boldsymbol{x}^{\infty}, \boldsymbol{y}^{\infty}\right)$:

$$
\mathcal{T}_{0} \stackrel{\text { def }}{=}\left\{t \mid p_{t}>\sum_{n \in \mathcal{N}} x_{n, t}^{\infty}\right\}
$$

Theorem (Jacquot, Beaude, Benchimol, Gaubert, and Oudjane, 2019)

For the sets \mathcal{X} and \mathcal{Y} defined above, and if $\mathcal{X} \cap \mathcal{Y}=\emptyset$, the following sets given by the limit APM orbit $\left(\boldsymbol{x}^{\infty}, \boldsymbol{y}^{\infty}\right)$:

$$
\mathcal{T}_{0} \stackrel{\text { def }}{=}\left\{t \mid p_{t}>\sum_{n \in \mathcal{N}} x_{n, t}^{\infty}\right\} \quad \text { and } \mathcal{N}_{0} \stackrel{\text { def }}{=}\left\{n \mid E_{n}-\sum_{t \notin \mathcal{T}_{0}} \underline{x}_{n, t}-\sum_{t \in \mathcal{T}_{0}} \bar{x}_{n, t}<0\right\}
$$

Theorem (Jacquot, Beaude, Benchimol, Gaubert, and Oudjane, 2019)

For the sets \mathcal{X} and \mathcal{Y} defined above, and if $\mathcal{X} \cap \mathcal{Y}=\emptyset$, the following sets given by the limit APM orbit $\left(\boldsymbol{x}^{\infty}, \boldsymbol{y}^{\infty}\right)$:

$$
\mathcal{T}_{0} \stackrel{\text { def }}{=}\left\{t \mid p_{t}>\sum_{n \in \mathcal{N}} x_{n, t}^{\infty}\right\} \quad \text { and } \mathcal{N}_{0} \stackrel{\text { def }}{=}\left\{n \mid E_{n}-\sum_{t \notin \mathcal{T}_{0}} \underline{x}_{n, t}-\sum_{t \in \mathcal{T}_{0}} \bar{x}_{n, t}<0\right\}
$$

define the cut $\mathfrak{H}_{\mathcal{T}_{0}, N_{0}}$ that is violated by \boldsymbol{p}, that is:

$$
\begin{equation*}
\sum_{n \in \mathcal{N}_{0}} E_{n}+\sum_{t \in \mathcal{T}_{0}, n \notin \mathcal{N}_{0}} \bar{x}_{n, t}-\sum_{t \notin \mathcal{T}_{0}, n \in \mathcal{N}_{0}} \underline{x}_{n, t}<\sum_{t \in \mathcal{T}_{0}} p_{t} \tag{3}
\end{equation*}
$$

Theorem (Jacquot, Beaude, Benchimol, Gaubert, and Oudjane, 2019)

For the sets \mathcal{X} and \mathcal{Y} defined above, and if $\mathcal{X} \cap \mathcal{Y}=\emptyset$, the following sets given by the limit APM orbit $\left(\boldsymbol{x}^{\infty}, \boldsymbol{y}^{\infty}\right)$:

$$
\mathcal{T}_{0} \stackrel{\text { def }}{=}\left\{t \mid p_{t}>\sum_{n \in \mathcal{N}} x_{n, t}^{\infty}\right\} \quad \text { and } \mathcal{N}_{0} \stackrel{\text { def }}{=}\left\{n \mid E_{n}-\sum_{t \notin \mathcal{T}_{0}} \underline{x}_{n, t}-\sum_{t \in \mathcal{T}_{0}} \bar{x}_{n, t}<0\right\}
$$

define the cut $\mathfrak{H}_{\mathcal{T}_{0}, \mathcal{N}_{0}}$ that is violated by \boldsymbol{p}, that is:

$$
\begin{equation*}
\sum_{n \in \mathcal{N}_{0}} E_{n}+\sum_{t \in \mathcal{T}_{0}, n \notin \mathcal{N}_{0}} \bar{x}_{n, t}-\sum_{t \notin \mathcal{T}_{0}, n \in \mathcal{N}_{0}} \underline{x}_{n, t}<\sum_{t \in \mathcal{T}_{0}} p_{t} . \tag{3}
\end{equation*}
$$

The cut $\mathfrak{H}_{\mathcal{T}_{0}, \mathcal{N}_{0}}$ can be reformulated in terms of aggregate $\sum_{n \in \mathcal{N}} \boldsymbol{x}_{n}^{\infty}$ as:

$$
\begin{equation*}
\sum_{t \in \mathcal{T}_{0}} p_{t} \leq \mathrm{A}_{\mathcal{T}_{0}} \text { with } \mathrm{A}_{\mathcal{T}_{0}} \stackrel{\text { def }}{=} \sum_{t \in \mathcal{T}_{0}} \sum_{n \in \mathcal{N}} x_{n, t}^{\infty} \tag{4}
\end{equation*}
$$

Theorem (Jacquot, Beaude, Benchimol, Gaubert, and Oudjane, 2019)

For the sets \mathcal{X} and \mathcal{Y} defined above, and if $\mathcal{X} \cap \mathcal{Y}=\emptyset$, the following sets given by the limit APM orbit $\left(\boldsymbol{x}^{\infty}, \boldsymbol{y}^{\infty}\right)$:

$$
\mathcal{T}_{0} \stackrel{\text { def }}{=}\left\{t \mid p_{t}>\sum_{n \in \mathcal{N}} x_{n, t}^{\infty}\right\} \quad \text { and } \mathcal{N}_{0} \stackrel{\text { def }}{=}\left\{n \mid E_{n}-\sum_{t \notin \mathcal{T}_{0}} \underline{x}_{n, t}-\sum_{t \in \mathcal{T}_{0}} \bar{x}_{n, t}<0\right\}
$$

define the cut $\mathfrak{H}_{\mathcal{T}_{0}, \mathcal{N}_{0}}$ that is violated by \boldsymbol{p}, that is:

$$
\begin{equation*}
\sum_{n \in \mathcal{N}_{0}} E_{n}+\sum_{t \in \mathcal{T}_{0}, n \notin \mathcal{N}_{0}} \bar{x}_{n, t}-\sum_{t \notin \mathcal{T}_{0}, n \in \mathcal{N}_{0}} \underline{x}_{n, t}<\sum_{t \in \mathcal{T}_{0}} p_{t} . \tag{3}
\end{equation*}
$$

The cut $\mathfrak{H}_{\mathcal{T}_{0}, \mathcal{N}_{0}}$ can be reformulated in terms of aggregate $\sum_{n \in \mathcal{N}} \boldsymbol{x}_{n}^{\infty}$ as:

$$
\begin{equation*}
\sum_{t \in \mathcal{T}_{0}} p_{t} \leq \mathrm{A}_{\mathcal{T}_{0}} \text { with } \mathrm{A}_{\mathcal{T}_{0}} \stackrel{\text { def }}{=} \sum_{t \in \mathcal{T}_{0}} \sum_{n \in \mathcal{N}} x_{n, t}^{\infty} . \text { use } \mathrm{SMC} \tag{4}
\end{equation*}
$$

Theorem (Jacquot, Beaude, Benchimol, Gaubert, and Oudjane, 2019)

For the sets \mathcal{X} and \mathcal{Y} defined above, and if $\mathcal{X} \cap \mathcal{Y}=\emptyset$, the following sets given by the limit APM orbit $\left(\boldsymbol{x}^{\infty}, \boldsymbol{y}^{\infty}\right)$:

$$
\mathcal{T}_{0} \stackrel{\text { def }}{=}\left\{t \mid p_{t}>\sum_{n \in \mathcal{N}} x_{n, t}^{\infty}\right\} \quad \text { and } \mathcal{N}_{0} \stackrel{\text { def }}{=}\left\{n \mid E_{n}-\sum_{t \notin \mathcal{T}_{0}} \underline{x}_{n, t}-\sum_{t \in \mathcal{T}_{0}} \bar{x}_{n, t}<0\right\}
$$

define the cut $\mathfrak{H}_{\mathcal{T}_{0}, N_{0}}$ that is violated by \boldsymbol{p}, that is:

$$
\begin{equation*}
\sum_{n \in \mathcal{N}_{0}} E_{n}+\sum_{t \in \mathcal{T}_{0}, n \notin \mathcal{N}_{0}} \bar{x}_{n, t}-\sum_{t \notin \mathcal{T}_{0}, n \in \mathcal{N}_{0}} \underline{x}_{n, t}<\sum_{t \in \mathcal{T}_{0}} p_{t} \tag{3}
\end{equation*}
$$

The cut $\mathfrak{H}_{\mathcal{T}_{0}, \mathcal{N}_{0}}$ can be reformulated in terms of aggregate $\sum_{n \in \mathcal{N}} \boldsymbol{x}_{n}^{\infty}$ as:

$$
\begin{equation*}
\sum_{t \in \mathcal{T}_{0}} p_{t} \leq \mathrm{A}_{\mathcal{T}_{0}} \text { with } \mathrm{A}_{\mathcal{T}_{0}} \stackrel{\text { def }}{=} \sum_{t \in \mathcal{T}_{0}} \sum_{n \in \mathcal{N}} x_{n, t}^{\infty} . \text { use } \mathrm{SMC} \tag{4}
\end{equation*}
$$

Proposition (Jacquot, Beaude, Benchimol, Gaubert, and Oudjane, 2019)

The cut $\mathfrak{H}_{\mathcal{T}_{0}, \mathcal{N}_{0}}$ can be obtained after a finite number of APM iterations.

Benchmarks: MILP model for management of a microgrid

$$
\begin{aligned}
& \min _{\boldsymbol{p}, \boldsymbol{p}^{g},\left(\boldsymbol{p}_{k}^{g}\right),\left(\boldsymbol{b}_{k}\right), \boldsymbol{b}^{\mathrm{oN}}, \boldsymbol{b}^{\mathrm{ST}}} \sum_{t \in \mathcal{T}}\left(\alpha_{1} b_{t}^{\mathrm{ON}}+\sum_{k} c_{k} p_{k t}^{g}+C^{\mathrm{ST}} b_{t}^{\mathrm{ST}}\right) \\
& p_{t}^{g}=\sum_{k=1}^{K} p_{k, t}^{g}, \forall t \in \mathcal{T} \\
& b_{k, t}\left(\theta_{k}-\theta_{k-1}\right) \leq p_{k, t}^{g} \leq b_{k-1, t}\left(\theta_{k}-\theta_{k-1}\right), \forall 1 \leq k \leq K, \forall t \\
& \min _{\boldsymbol{x} \in \mathbb{R}^{N \times T}, \boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) \\
& \boldsymbol{p} \in \mathcal{P} \\
& \sum_{n} x_{n, t}=p_{t}, \forall t \\
& x_{n} \in \mathcal{X}_{n} \text {. } \\
& b_{t}^{\mathrm{ST}} \geq b_{t}^{\mathrm{ON}}-b_{t-1}^{\mathrm{ON}}, \forall t \in\{2, \ldots, T\} \\
& \underline{p}^{g} b_{t}^{\text {ON }} \leq p_{t}^{g} \leq \bar{p}^{g} b_{t}^{O N}, \forall t \in \mathcal{T} \\
& \equiv b_{t}^{\mathrm{ON}}, b_{t}^{\mathrm{ST}}, b_{1, t}, \ldots, b_{K-1, t} \in\{0,1\}, \forall t \in \mathcal{T} \\
& \boldsymbol{p} \leq \boldsymbol{p}^{\mathrm{PV}}+\boldsymbol{p}^{\mathrm{g}} \\
& \sum_{t} p_{t}=\sum_{n} E_{n} \\
& \sum_{n} \underline{x}_{n, t} \leq p_{t} \leq \sum_{n} \bar{x}_{n, t} \\
& \sum_{n \in \mathcal{N}} x_{n, t}=p_{t}, \forall t \in \mathcal{T} \\
& x_{n} \in \mathcal{X}_{n} \text {. }
\end{aligned}
$$

Benchmarks: MILP model for management of a microgrid

$$
\begin{aligned}
& \min _{\boldsymbol{p}, \boldsymbol{p}^{g},\left(\boldsymbol{p}_{k}^{g}\right),\left(\boldsymbol{b}_{k}\right), \boldsymbol{b}^{\mathrm{oN}}, \boldsymbol{b}^{\mathrm{ST}}} \sum_{t \in \mathcal{T}}\left(\alpha_{1} b_{t}^{\mathrm{ON}}+\sum_{k} c_{k} p_{k t}^{g}+C^{\mathrm{ST}} b_{t}^{\mathrm{ST}}\right) \\
& p_{t}^{g}=\sum_{k=1}^{K} p_{k, t}^{g}, \forall t \in \mathcal{T} \\
& b_{k, t}\left(\theta_{k}-\theta_{k-1}\right) \leq p_{k, t}^{g} \leq b_{k-1, t}\left(\theta_{k}-\theta_{k-1}\right), \forall 1 \leq k \leq K, \forall t \\
& \min _{\boldsymbol{x} \in \mathbb{R}^{N \times T}, \boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) \\
& \boldsymbol{p} \in \mathcal{P} \\
& \sum_{n} x_{n, t}=p_{t}, \forall t \\
& x_{n} \in \mathcal{X}_{n} . \\
& b_{t}^{\mathrm{ST}} \geq b_{t}^{\mathrm{ON}}-b_{t-1}^{\mathrm{ON}}, \forall t \in\{2, \ldots, T\} \\
& \underline{p}^{g} b_{t}^{\text {ON }} \leq p_{t}^{g} \leq \bar{p}^{g} b_{t}^{\text {ON }}, \forall t \in \mathcal{T} \\
& \equiv \quad b_{t}^{\mathrm{oN}}, b_{t}^{\mathrm{ST}}, b_{1, t}, \ldots, b_{K-1, t} \in\{0,1\}, \forall t \in \mathcal{T} \\
& \boldsymbol{p} \leq \boldsymbol{p}^{\mathrm{PV}}+\boldsymbol{p}^{\mathrm{g}} \\
& \sum_{t} p_{t}=\sum_{n} E_{n} \\
& \sum_{n} \underline{x}_{n, t} \leq p_{t} \leq \sum_{n} \bar{x}_{n, t} \\
& \sum_{n \in \mathcal{N}} x_{n, t}=p_{t}, \forall t \in \mathcal{T} \\
& x_{n} \in \mathcal{X}_{n} \text {. } \\
& T=24 \\
& \text { - } 2^{24}>1,6 \times 10^{7} \\
& \text { possible Hoffman cuts }
\end{aligned}
$$

Benchmarks: MILP model for management of a microgrid

$$
\begin{aligned}
& \min _{\boldsymbol{p}, \boldsymbol{p}^{g},\left(\boldsymbol{p}_{k}^{g}\right),\left(\boldsymbol{b}_{k}\right), \boldsymbol{b}^{\mathrm{oN}}, \boldsymbol{b}^{\mathrm{ST}}} \sum_{t \in \mathcal{T}}\left(\alpha_{1} b_{t}^{\mathrm{ON}}+\sum_{k} c_{k} p_{k t}^{g}+C^{\mathrm{ST}} b_{t}^{\mathrm{ST}}\right) \\
& p_{t}^{g}=\sum_{k=1}^{K} p_{k, t}^{g}, \forall t \in \mathcal{T} \\
& b_{k, t}\left(\theta_{k}-\theta_{k-1}\right) \leq p_{k, t}^{g} \leq b_{k-1, t}\left(\theta_{k}-\theta_{k-1}\right), \forall 1 \leq k \leq K, \forall t \\
& \min _{\boldsymbol{x} \in \mathbb{R}^{N \times T}, \boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) \\
& \boldsymbol{p} \in \mathcal{P} \quad \equiv \quad b_{t}^{\mathrm{ON}}, b_{t}^{\mathrm{ST}}, b_{1, t}, \ldots, b_{K-1, t} \in\{0,1\}, \forall t \in \mathcal{T} \\
& b_{t}^{\mathrm{ST}} \geq b_{t}^{\mathrm{ON}}-b_{t-1}^{\mathrm{ON}}, \forall t \in\{2, \ldots, T\} \\
& \underline{p}^{g} b_{t}^{\text {ON }} \leq p_{t}^{g} \leq \bar{p}^{g} b_{t}^{\text {ON }}, \forall t \in \mathcal{T} \\
& \sum_{n} x_{n, t}=p_{t}, \forall t \\
& x_{n} \in \mathcal{X}_{n} \text {. } \\
& \boldsymbol{p} \leq \boldsymbol{p}^{\mathrm{PV}}+\boldsymbol{p}^{g} \\
& \sum_{t} p_{t}=\sum_{n} E_{n} \\
& \sum_{n} \underline{x}_{n, t} \leq p_{t} \leq \sum_{n} \bar{x}_{n, t} \\
& \sum_{n \in \mathcal{N}} x_{n, t}=p_{t}, \forall t \in \mathcal{T} \\
& x_{n} \in \mathcal{X}_{n} . \\
& T=24 \\
& \text { - } 2^{24}>1,6 \times 10^{7} \\
& \text { possible Hoffman cuts }
\end{aligned}
$$

Part II

Game Theory and Decentralized Management of Flexibilities

Why considering a Game Theory approach?

- individual agents (elec consumers) make consumption decisions based on price incentives and personal utilities,

Why considering a Game Theory approach?

- individual agents (elec consumers) make consumption decisions based on price incentives and personal utilities,
- individual decisions have an impact on the system level,

Why considering a Game Theory approach?

- individual agents (elec consumers) make consumption decisions based on price incentives and personal utilities,
- individual decisions have an impact on the system level,
- adopting a decentralized point of view: information kept locally by consumers (privacy).

Electricity Consumers Congestion Game

- time horizon as a finite set $\mathcal{T}=\{1, \ldots, T\}$;
- set of elec consumers $\mathcal{N}=\{1, \ldots, N\}$ with flexible appliances ;
- each $n \in \mathcal{N}$ has a feasibility set \mathcal{X}_{n} of consumption profiles $\left(x_{n, t}\right)_{t \in \mathcal{T}}$ e.g. $\mathcal{X}_{n} \stackrel{\text { def }}{=}\left\{\boldsymbol{x}_{n} \in \mathbb{R}^{T} \mid \sum_{t} x_{n, t}=E_{n}\right.$ and $\left.\forall t, \underline{x}_{n, t} \leq x_{n, t} \leq \bar{x}_{n, t}\right\}$.

Electricity Consumers Congestion Game

- time horizon as a finite set $\mathcal{T}=\{1, \ldots, T\}$;
- set of elec consumers $\mathcal{N}=\{1, \ldots, N\}$ with flexible appliances ;
- each $n \in \mathcal{N}$ has a feasibility set \mathcal{X}_{n} of consumption profiles $\left(x_{n, t}\right)_{t \in \mathcal{T}}$ e.g. $\mathcal{X}_{n} \stackrel{\text { def }}{=}\left\{\boldsymbol{x}_{n} \in \mathbb{R}^{T} \mid \sum_{t} x_{n, t}=E_{n}\right.$ and $\left.\forall t, \underline{x}_{n, t} \leq x_{n, t} \leq \bar{x}_{n, t}\right\}$.
- for each t, aggregator has a per-unit energy price function $X_{t} \mapsto c_{t}\left(X_{t}\right)$, function of aggregated demand $X_{t} \stackrel{\text { def }}{=} \sum_{m \in \mathcal{N}} \boldsymbol{x}_{m, t}$ provided to consumers;

Electricity Consumers Congestion Game

- time horizon as a finite set $\mathcal{T}=\{1, \ldots, T\}$;
- set of elec consumers $\mathcal{N}=\{1, \ldots, N\}$ with flexible appliances ;
- each $n \in \mathcal{N}$ has a feasibility set \mathcal{X}_{n} of consumption profiles $\left(x_{n, t}\right)_{t \in \mathcal{T}}$ e.g. $\mathcal{X}_{n} \stackrel{\text { def }}{=}\left\{\boldsymbol{x}_{n} \in \mathbb{R}^{T} \mid \sum_{t} x_{n, t}=E_{n} \quad\right.$ and $\left.\quad \forall t, \underline{x}_{n, t} \leq x_{n, t} \leq \bar{x}_{n, t}\right\}$.
- for each t, aggregator has a per-unit energy price function $X_{t} \mapsto c_{t}\left(X_{t}\right)$, function of aggregated demand $X_{t} \stackrel{\text { def }}{=} \sum_{m \in \mathcal{N}} \boldsymbol{x}_{m, t}$ provided to consumers; Examples:
- minimize distance to target profile $\left(Q_{t}\right)_{t \in \mathcal{T}}$ bid on elec market
- minimizing production costs with self production.

Electricity Consumers Congestion Game

- time horizon as a finite set $\mathcal{T}=\{1, \ldots, T\}$;
- set of elec consumers $\mathcal{N}=\{1, \ldots, N\}$ with flexible appliances ;
- each $n \in \mathcal{N}$ has a feasibility set \mathcal{X}_{n} of consumption profiles $\left(x_{n, t}\right)_{t \in \mathcal{T}}$ e.g. $\mathcal{X}_{n} \stackrel{\text { def }}{=}\left\{\boldsymbol{x}_{n} \in \mathbb{R}^{T} \mid \sum_{t} x_{n, t}=E_{n}\right.$ and $\left.\forall t, \underline{x}_{n, t} \leq x_{n, t} \leq \bar{x}_{n, t}\right\}$.
- for each t, aggregator has a per-unit energy price function $X_{t} \mapsto c_{t}\left(X_{t}\right)$, function of aggregated demand $X_{t} \stackrel{\text { def }}{=} \sum_{m \in \mathcal{N}} \boldsymbol{x}_{m, t}$ provided to consumers;

Electricity Consumers Congestion Game

- time horizon as a finite set $\mathcal{T}=\{1, \ldots, T\}$;
- set of elec consumers $\mathcal{N}=\{1, \ldots, N\}$ with flexible appliances ;
- each $n \in \mathcal{N}$ has a feasibility set \mathcal{X}_{n} of consumption profiles $\left(x_{n, t}\right)_{t \in \mathcal{T}}$ e.g. $\mathcal{X}_{n} \stackrel{\text { def }}{=}\left\{\boldsymbol{x}_{n} \in \mathbb{R}^{T} \mid \sum_{t} x_{n, t}=E_{n} \quad\right.$ and $\left.\quad \forall t, \underline{x}_{n, t} \leq x_{n, t} \leq \bar{x}_{n, t}\right\}$.
- for each t, aggregator has a per-unit energy price function $X_{t} \mapsto c_{t}\left(X_{t}\right)$, function of aggregated demand $X_{t} \stackrel{\text { def }}{=} \sum_{m \in \mathcal{N}} \boldsymbol{x}_{m, t}$ provided to consumers;
- each $n \in \mathcal{N}$ minimizes the bill

$$
b_{n}\left(\boldsymbol{x}_{n}, \boldsymbol{x}_{-n}\right) \stackrel{\text { def }}{=} \sum_{t \in \mathcal{T}} x_{n, t} c_{t}\left(X_{t}\right) \text { with } \boldsymbol{x}_{n} \in \mathcal{X}_{n}
$$

Nash Equilibrium: Existence

Nash Equilibrium $\hat{\boldsymbol{x}}$ relevant solution concept in games

Nash Equilibrium: Existence

Nash Equilibrium $\hat{\boldsymbol{x}}$ relevant solution concept in games

Nash Equilibrium: Existence

Nash Equilibrium \hat{x} relevant solution concept in games
$\forall n \in \mathcal{N}, \forall \boldsymbol{x}_{n} \in \mathcal{X}_{n}, b_{n}\left(\hat{x}_{n}, \hat{\boldsymbol{x}}_{-n}\right) \leq b_{n}\left(\boldsymbol{x}_{n}, \hat{\boldsymbol{x}}_{-n}\right) \Longleftrightarrow \hat{\boldsymbol{x}}_{n} \in \underset{\boldsymbol{x}_{n} \in \mathcal{X}_{n}}{\operatorname{argmin}} b_{n}\left(\boldsymbol{x}_{n}, \hat{\boldsymbol{x}}_{-n}\right)$

Nash Equilibrium: Existence

Nash Equilibrium $\hat{\boldsymbol{x}}$ relevant solution concept in games

$\forall n \in \mathcal{N}, \forall \boldsymbol{x}_{n} \in \mathcal{X}_{n}, b_{n}\left(\hat{x}_{n}, \hat{\boldsymbol{x}}_{-n}\right) \leq b_{n}\left(\boldsymbol{x}_{n}, \hat{\boldsymbol{x}}_{-n}\right) \Longleftrightarrow \hat{\boldsymbol{x}}_{n} \in \underset{\boldsymbol{x}_{n} \in \mathcal{X}_{n}}{\operatorname{argmin}} b_{n}\left(\boldsymbol{x}_{n}, \hat{\boldsymbol{x}}_{-n}\right)$

Assumption

For each $t \in \mathcal{T}, c_{t}($.$) is smooth (D2), convex and strictly increasing.$
Example: affine prices $\forall t \in \mathcal{T}, c_{t}(x)=\alpha_{t}+\beta_{t} x$ with $\alpha_{t}, \beta_{t} \in\left(\mathbb{R}_{+}^{*}\right)^{2}$.

Nash Equilibrium: Existence

Nash Equilibrium \hat{x} - relevant solution concept in games
$\forall n \in \mathcal{N}, \forall x_{n} \in \mathcal{X}_{n}, b_{n}\left(\hat{x}_{n}, \hat{\boldsymbol{x}}_{-n}\right) \leq b_{n}\left(\boldsymbol{x}_{n}, \hat{\boldsymbol{x}}_{-n}\right) \Longleftrightarrow \hat{\boldsymbol{x}}_{n} \in \underset{x_{n} \in \mathcal{X}_{n}}{\operatorname{argmin}} b_{n}\left(\boldsymbol{x}_{n}, \hat{\boldsymbol{x}}_{-n}\right)$

Assumption

For each $t \in \mathcal{T}, c_{t}($.$) is smooth (D2), convex and strictly increasing.$
Example: affine prices $\forall t \in \mathcal{T}, c_{t}(x)=\alpha_{t}+\beta_{t} x$ with $\alpha_{t}, \beta_{t} \in\left(\mathbb{R}_{+}^{*}\right)^{2}$.

Assumption

\mathcal{X}_{n} is a convex and compact subset of \mathbb{R}^{T}.

Nash Equilibrium: Existence

Nash Equilibrium $\hat{\boldsymbol{x}}$ - relevant solution concept in games
$\forall n \in \mathcal{N}, \forall x_{n} \in \mathcal{X}_{n}, b_{n}\left(\hat{x}_{n}, \hat{\boldsymbol{x}}_{-n}\right) \leq b_{n}\left(\boldsymbol{x}_{n}, \hat{\boldsymbol{x}}_{-n}\right) \Longleftrightarrow \hat{\boldsymbol{x}}_{n} \in \underset{x_{n} \in \mathcal{X}_{n}}{\operatorname{argmin}} b_{n}\left(\boldsymbol{x}_{n}, \hat{\boldsymbol{x}}_{-n}\right)$

Assumption

For each $t \in \mathcal{T}, c_{t}($.$) is smooth (D2), convex and strictly increasing.$
Example: affine prices $\forall t \in \mathcal{T}, c_{t}(x)=\alpha_{t}+\beta_{t} x$ with $\alpha_{t}, \beta_{t} \in\left(\mathbb{R}_{+}^{*}\right)^{2}$.

Assumption

\mathcal{X}_{n} is a convex and compact subset of \mathbb{R}^{T}.
Rosen (65): In a game satisfying the above assumptions, there exists an NE.

Nash Equilibrium Uniqueness conditions

Proposition (Jacquot, Beaude, Gaubert, and Oudjane, 2017)

If $2\left|c_{t}^{\prime}\left(X_{t}\right)\right|>\left\|\boldsymbol{x}_{t}\right\|_{2}\left|c_{t}^{\prime \prime}\left(X_{t}\right)\right|$ for each $t \in \mathcal{T}$ and each feasible $\boldsymbol{x} \in \mathcal{X}$, then an NE is unique.

Nash Equilibrium Uniqueness conditions

Proposition (Jacquot, Beaude, Gaubert, and Oudjane, 2017)

If $2\left|c_{t}^{\prime}\left(X_{t}\right)\right|>\left\|\boldsymbol{x}_{t}\right\|_{2}\left|c_{t}^{\prime \prime}\left(X_{t}\right)\right|$ for each $t \in \mathcal{T}$ and each feasible $\boldsymbol{x} \in \mathcal{X}$, then an NE is unique.

Idea: use matrix eigenvalues inequalities to obtain strict monotonicity of operator $\hat{F}: \boldsymbol{x} \mapsto\left(\nabla_{\boldsymbol{x}_{n}} b_{n}\left(\boldsymbol{x}_{n}, \boldsymbol{x}_{-n}\right)\right)_{n}=\left(\left[x_{n, t} c_{t}^{\prime}\left(X_{t}\right)+c_{t}\left(X_{t}\right)\right]_{t}\right)_{n}$, then apply Rosen standard uniqueness result.

Nash Equilibrium Uniqueness conditions

Proposition (Jacquot, Beaude, Gaubert, and Oudjane, 2017)

If $2\left|c_{t}^{\prime}\left(X_{t}\right)\right|>\left\|\boldsymbol{x}_{t}\right\|_{2}\left|c_{t}^{\prime \prime}\left(X_{t}\right)\right|$ for each $t \in \mathcal{T}$ and each feasible $\boldsymbol{x} \in \mathcal{X}$, then an NE is unique.

Idea: use matrix eigenvalues inequalities to obtain strict monotonicity of operator $\hat{F}: \boldsymbol{x} \mapsto\left(\nabla_{\boldsymbol{x}_{n}} b_{n}\left(\boldsymbol{x}_{n}, \boldsymbol{x}_{-n}\right)\right)_{n}=\left(\left[x_{n, t} c_{t}^{\prime}\left(X_{t}\right)+c_{t}\left(X_{t}\right)\right]_{t}\right)_{n}$, then apply Rosen standard uniqueness result.
$\mathbf{r m}$: convexity of prices or convexity of $b_{n}\left(., \boldsymbol{x}_{-n}\right)$ are not sufficient!

Nash Equilibrium Uniqueness conditions

Proposition (Jacquot, Beaude, Gaubert, and Oudjane, 2017)

If $2\left|c_{t}^{\prime}\left(X_{t}\right)\right|>\left\|\boldsymbol{x}_{t}\right\|_{2}\left|c_{t}^{\prime \prime}\left(X_{t}\right)\right|$ for each $t \in \mathcal{T}$ and each feasible $\boldsymbol{x} \in \mathcal{X}$, then an NE is unique.

Idea: use matrix eigenvalues inequalities to obtain strict monotonicity of operator $\hat{F}: \boldsymbol{x} \mapsto\left(\nabla_{\boldsymbol{x}_{n}} b_{n}\left(\boldsymbol{x}_{n}, \boldsymbol{x}_{-n}\right)\right)_{n}=\left(\left[x_{n, t} c_{t}^{\prime}\left(X_{t}\right)+c_{t}\left(X_{t}\right)\right]_{t}\right)_{n}$, then apply Rosen standard uniqueness result.
$\mathbf{r m}$: convexity of prices or convexity of $b_{n}\left(., \boldsymbol{x}_{-n}\right)$ are not sufficient!

Proposition (Jacquot, Beaude, Gaubert, and Oudjane, 2017)

For the game defined above, with convex and strictly increasing prices $\left(c_{t}\right)_{t}$, and $\mathcal{X}_{n} \stackrel{\text { def }}{=}\left\{\sum_{t \in \mathcal{T}} x_{n, t}=E_{n}, \underline{x}_{n, t} \leq x_{n, t} \leq \bar{x}_{n, t}, \forall t \in \mathcal{T}\right\}$, there is a unique $N E$.

Nash Equilibrium Uniqueness conditions

Proposition (Jacquot, Beaude, Gaubert, and Oudjane, 2017)

If $2\left|c_{t}^{\prime}\left(X_{t}\right)\right|>\left\|\boldsymbol{x}_{t}\right\|_{2}\left|c_{t}^{\prime \prime}\left(X_{t}\right)\right|$ for each $t \in \mathcal{T}$ and each feasible $\boldsymbol{x} \in \mathcal{X}$, then an NE is unique.

Idea: use matrix eigenvalues inequalities to obtain strict monotonicity of operator $\hat{F}: \boldsymbol{x} \mapsto\left(\nabla_{\boldsymbol{x}_{n}} b_{n}\left(\boldsymbol{x}_{n}, \boldsymbol{x}_{-n}\right)\right)_{n}=\left(\left[x_{n, t} c_{t}^{\prime}\left(X_{t}\right)+c_{t}\left(X_{t}\right)\right]_{t}\right)_{n}$, then apply Rosen standard uniqueness result.
$\mathbf{r m}$: convexity of prices or convexity of $b_{n}\left(., \boldsymbol{x}_{-n}\right)$ are not sufficient!

Proposition (Jacquot, Beaude, Gaubert, and Oudjane, 2017)

For the game defined above, with convex and strictly increasing prices $\left(c_{t}\right)_{t}$, and $\mathcal{X}_{n} \stackrel{\text { def }}{=}\left\{\sum_{t \in \mathcal{T}} x_{n, t}=E_{n}, x_{n, t} \leq x_{n, t} \leq \bar{x}_{n, t}, \forall t \in \mathcal{T}\right\}$, there is a unique NE.

Idea: generalizes Orda's result with bound constraints.

Measuring sub-optimality: the price of Anarchy

Define the social cost as $\operatorname{SC}(\boldsymbol{x}) \stackrel{\text { def }}{=} \sum_{n} b_{n}(\boldsymbol{x})$

Measuring sub-optimality: the price of Anarchy

Define the social cost as $\operatorname{SC}(\boldsymbol{x}) \stackrel{\text { def }}{=} \sum_{n} b_{n}(\boldsymbol{x})=\sum_{t} X_{t} c_{t}\left(X_{t}\right)$.

Measuring sub-optimality: the price of Anarchy

Define the social cost as $\operatorname{SC}(\boldsymbol{x}) \stackrel{\text { def }}{=} \sum_{n} b_{n}(\boldsymbol{x})=\sum_{t} X_{t} c_{t}\left(X_{t}\right)$.
A NE does not necessarily minimize the social cost!

Measuring sub-optimality: the price of Anarchy

Define the social cost as $\operatorname{SC}(\boldsymbol{x}) \stackrel{\text { def }}{=} \sum_{n} b_{n}(\boldsymbol{x})=\sum_{t} X_{t} c_{t}\left(X_{t}\right)$.
A NE does not necessarily minimize the social cost!
If the social cost is high at the equilibrium, our system is inefficient!

Measuring sub-optimality: the price of Anarchy

Define the social cost as $\operatorname{SC}(\boldsymbol{x}) \stackrel{\text { def }}{=} \sum_{n} b_{n}(\boldsymbol{x})=\sum_{t} X_{t} c_{t}\left(X_{t}\right)$.
A NE does not necessarily minimize the social cost!
If the social cost is high at the equilibrium, our system is inefficient!

- Price of Anarchy:

$$
\operatorname{PoA}(\mathcal{G})=\frac{\sup _{\boldsymbol{x} \in \mathcal{X}_{\mathrm{NE}}} \operatorname{SC}(\boldsymbol{x})}{\inf _{x \in \mathcal{X}} \operatorname{SC}(\boldsymbol{x})} .
$$

Measuring sub-optimality: the price of Anarchy

Define the social cost as $\operatorname{SC}(\boldsymbol{x}) \stackrel{\text { def }}{=} \sum_{n} b_{n}(\boldsymbol{x})=\sum_{t} X_{t} c_{t}\left(X_{t}\right)$.
A NE does not necessarily minimize the social cost!
If the social cost is high at the equilibrium, our system is inefficient!

- Price of Anarchy:

$$
\operatorname{PoA}(\mathcal{G})=\frac{\sup _{\boldsymbol{x} \in \mathcal{X}_{\mathrm{NE}}} \operatorname{SC}(\boldsymbol{x})}{\inf _{\boldsymbol{x} \in \mathcal{X}} \operatorname{SC}(\boldsymbol{x})}
$$

- Can have a bound for specific price parameters to ensure efficiency ?

Bounding the PoA in the affine case

Theorem (Jacquot, Beaude, Gaubert, and Oudjane, 2017)

With affine prices for each $t, c_{t}\left(X_{t}\right)=\alpha_{t}+\beta_{t} X_{t}$ with $\alpha_{t} \geq 0, \beta_{t}>0$, we have:

$$
\operatorname{PoA}(\mathcal{G}) \leq 1+\frac{3}{4} \sup _{t \in \mathcal{T}}\left(1+\frac{\alpha_{t}}{\beta_{t} \bar{X}_{t}}\right)^{-1} \underset{\frac{\alpha_{t}}{\beta_{t} \bar{X}_{t}}}{\longrightarrow}+\infty
$$

Bounding the PoA in the affine case

Theorem (Jacquot, Beaude, Gaubert, and Oudjane, 2017)

With affine prices for each $t, c_{t}\left(X_{t}\right)=\alpha_{t}+\beta_{t} X_{t}$ with $\alpha_{t} \geq 0, \beta_{t}>0$, we have:

$$
\operatorname{PoA}(\mathcal{G}) \leq 1+\frac{3}{4} \sup _{t \in \mathcal{T}}\left(1+\frac{\alpha_{t}}{\beta_{t} \bar{X}_{t}}\right)^{-1} \underset{\frac{\alpha_{t}}{\beta_{t} \bar{X}_{t}}}{\longrightarrow+\infty} \xrightarrow{\longrightarrow} 1
$$

Theorem (polynomial prices, Roughgarden (2015))
 If for each t, c_{t} is a polynomial function with positive coefficients of degree $\leq d$, then
 $\operatorname{PoA}(\mathcal{G}) \leq\left(\frac{1+\sqrt{d+1}}{2}\right)^{d+1}$, and
 $\operatorname{PoA}(\mathcal{G}) \leq \frac{3}{2}$ for affine prices.

Two decentralized algorithms

Best Response (BR)

Two decentralized algorithms

```
Best Response (BR)
Require: }\mp@subsup{\boldsymbol{x}}{}{(0)}\mathrm{ , stopping criteria,
    k\leftarrow0
    while not stopping criteria do
    for n=1 to N do
    done
done
```


Two decentralized algorithms

Best Response (BR)

Require: $\boldsymbol{x}^{(0)}$, stopping criteria, $k \leftarrow 0$
while not stopping criteria do
for $n=1$ to N do

$$
\begin{aligned}
& S_{n}^{(k)}=\sum_{m<n} \boldsymbol{x}_{m}^{(k+1)}+\sum_{m>n} \boldsymbol{x}_{m}^{(k)} \\
& \boldsymbol{x}_{n}^{(k+1)} \leftarrow \operatorname{BR}_{n}\left(S_{n}^{(k)}\right)=\underset{x_{n} \in \mathcal{X}_{n}}{\operatorname{argmin}} \sum_{t} x_{n, t} c_{t}\left(S_{n, t}^{(k)}+x_{n, t}\right)
\end{aligned}
$$

done
done

Two decentralized algorithms

Best Response (BR)

Require: $\boldsymbol{x}^{(0)}$, stopping criteria, $k \leftarrow 0$
while not stopping criteria do
for $n=1$ to N do

$$
\begin{aligned}
& S_{n}^{(k)}=\sum_{m<n} \boldsymbol{x}_{m}^{(k+1)}+\sum_{m>n} \boldsymbol{x}_{m}^{(k)} \\
& \boldsymbol{x}_{n}^{(k+1)} \leftarrow \operatorname{BR}_{n}\left(S_{n}^{(k)}\right)=\underset{x_{n} \in \mathcal{X}_{n}}{\operatorname{argmin}} \sum_{t} x_{n, t} c_{t}\left(S_{n, t}^{(k)}+x_{n, t}\right)
\end{aligned}
$$

done
done

Two decentralized algorithms

Best Response (BR)

Require: $\boldsymbol{x}^{(0)}$, stopping criteria, $k \leftarrow 0$
while not stopping criteria do
for $n=1$ to N do

$$
\begin{aligned}
& S_{n}^{(k)}=\sum_{m<n} \boldsymbol{x}_{m}^{(k+1)}+\sum_{m>n} \boldsymbol{x}_{m}^{(k)} \\
& \boldsymbol{x}_{n}^{(k+1)} \leftarrow \operatorname{BR}_{n}\left(S_{n}^{(k)}\right)=\underset{x_{n} \in \mathcal{X}_{n}}{\operatorname{argmin}} \sum_{t} x_{n, t} c_{t}\left(S_{n, t}^{(k)}+x_{n, t}\right)
\end{aligned}
$$

done
$k \leftarrow k+1$
done

Two decentralized algorithms

Best Response (BR) / Simultaneous Improving Response (SIR)
Require: $\boldsymbol{x}^{(0)}$, stopping criteria, γ
$k \leftarrow 0$
while not stopping criteria do
for $n=1$ to N do

$$
\boldsymbol{x}_{n}^{(k+1)} \leftarrow \Pi_{\mathcal{X}_{n}}\left(\boldsymbol{x}_{n}^{(k)}-\gamma \nabla_{n} b_{n}\left(\boldsymbol{x}_{n}^{(k)}, \boldsymbol{x}_{-n}^{(k)}\right)\right)
$$

done
$k \leftarrow k+1$
done

Two decentralized algorithms

Best Response (BR) / Simultaneous Improving Response (SIR)
Require: $\boldsymbol{x}^{(0)}$, stopping criteria, γ
$k \leftarrow 0$
while not stopping criteria do
for $n=1$ to N do

$$
\begin{aligned}
& S_{n}^{(k)}=\sum_{m<n} \boldsymbol{x}_{m}^{(k+1)}+\sum_{m>n} x_{m}^{(k)} \\
& \boldsymbol{x}_{n}^{(k+1)} \leftarrow \mathrm{BR}_{n}\left(S_{n}^{(k)}\right)=\underset{x_{n} \in \mathcal{X}_{n}}{\operatorname{argmin}} \sum_{t} x_{n, t} c_{t}\left(S_{n, t}^{(k)}+x_{n, t}\right) \\
& \boldsymbol{x}_{n}^{(k+1)} \leftarrow \Pi_{\mathcal{X}_{n}}\left(x_{n}^{(k)}-\gamma \nabla_{n} b_{n}\left(x_{n}^{(k)}, x_{-n}^{(k)}\right)\right)
\end{aligned}
$$

done

$$
k \leftarrow k+1
$$

done

Two decentralized algorithms

Best Response (BR) / Simultaneous Improving Response (SIR)
Require: $\boldsymbol{x}^{(0)}$, stopping criteria, γ

$k \leftarrow 0$

while not stopping criteria do
for $n=1$ to N do

$$
\begin{aligned}
& S_{n}^{(k)}=\sum_{m<n} \boldsymbol{x}_{m}^{(k+1)}+\sum_{m>n} x_{m}^{(k)} \\
& \boldsymbol{x}_{n}^{(k+1)} \leftarrow \operatorname{BR}_{n}\left(S_{n}^{(k)}\right)=\underset{x_{n} \in \mathcal{X}_{n}}{\operatorname{argmin}} \sum_{t} x_{n, t} c_{t}\left(S_{n, t}^{(k)}+x_{n, t}\right) \\
& \boldsymbol{x}_{n}^{(k+1)} \leftarrow \Pi_{\mathcal{X}_{n}}\left(x_{n}^{(k)}-\gamma \nabla_{n} b_{n}\left(x_{n}^{(k)}, x_{-n}^{(k)}\right)\right)
\end{aligned}
$$

done

$$
k \leftarrow k+1
$$

done

rm: sequential/simultaneous: SIR can be parallelized, but not BR (divergence)!

Two decentralized algorithms

Best Response (BR) / Simultaneous Improving Response (SIR)
Require: $\boldsymbol{x}^{(0)}$, stopping criteria, γ

$k \leftarrow 0$

while not stopping criteria do
for $n=1$ to N do

$$
\begin{aligned}
& S_{n}^{(k)}=\sum_{m<n} \boldsymbol{x}_{m}^{(k+1)}+\sum_{m>n} \boldsymbol{x}_{m}^{(k)} \\
& \boldsymbol{x}_{n}^{(k+1)} \leftarrow \operatorname{BR}_{n}\left(S_{n}^{(k)}\right)=\underset{x_{n} \in \mathcal{X}_{n}}{\operatorname{argmin} \sum_{t} x_{n, t} c_{t}\left(S_{n, t}^{(k)}+x_{n, t}\right)} \\
& \boldsymbol{x}_{n}^{(k+1)} \leftarrow \Pi_{\mathcal{X}_{n}}\left(\boldsymbol{x}_{n}^{(k)}-\gamma \nabla_{n} b_{n}\left(\boldsymbol{x}_{n}^{(k)}, \boldsymbol{x}_{-n}^{(k)}\right)\right)
\end{aligned}
$$

done

$$
k \leftarrow k+1
$$

done

rm: sequential/simultaneous: SIR can be parallelized, but not BR (divergence)!

Two decentralized algorithms

Best Response (BR) / Simultaneous Improving Response (SIR)
Require: $\boldsymbol{x}^{(0)}$, stopping criteria, γ

$$
k \leftarrow 0
$$

while not stopping criteria do
for $n=1$ to N do

$$
\begin{aligned}
& S_{n}^{(k)}=\sum_{m<n} \boldsymbol{x}_{m}^{(k+1)}+\sum_{m>n} x_{m}^{(k)} \\
& \boldsymbol{x}_{n}^{(k+1)} \leftarrow \operatorname{BR}_{n}\left(S_{n}^{(k)}\right)=\underset{x_{n} \in \mathcal{X}_{n}}{\operatorname{argmin}} \sum_{t} x_{n, t} c_{t}\left(S_{n, t}^{(k)}+x_{n, t}\right) \\
& x_{n}^{(k+1)} \leftarrow \Pi_{\mathcal{X}_{n}}\left(x_{n}^{(k)}-\gamma \nabla_{n} b_{n}\left(x_{n}^{(k)}, x_{-n}^{(k)}\right)\right)
\end{aligned}
$$

done

$$
k \leftarrow k+1
$$

done

rm: sequential/simultaneous: SIR can be parallelized, but not BR (divergence)!

Two decentralized algorithms

Best Response (BR) / Simultaneous Improving Response (SIR)
Require: $\boldsymbol{x}^{(0)}$, stopping criteria, γ

$$
k \leftarrow 0
$$

while not stopping criteria do
for $n=1$ to N do

$$
\begin{aligned}
& S_{n}^{(k)}=\sum_{m<n} \boldsymbol{x}_{m}^{(k+1)}+\sum_{m>n} x_{m}^{(k)} \\
& \boldsymbol{x}_{n}^{(k+1)} \leftarrow \operatorname{BR}_{n}\left(S_{n}^{(k)}\right)=\underset{x_{n} \in \mathcal{X}_{n}}{\operatorname{argmin}} \sum_{t} x_{n, t} c_{t}\left(S_{n, t}^{(k)}+x_{n, t}\right) \\
& x_{n}^{(k+1)} \leftarrow \Pi_{\mathcal{X}_{n}}\left(x_{n}^{(k)}-\gamma \nabla_{n} b_{n}\left(x_{n}^{(k)}, x_{-n}^{(k)}\right)\right)
\end{aligned}
$$

done

$$
k \leftarrow k+1
$$

done

rm: sequential/simultaneous: SIR can be parallelized, but not BR (divergence)!

Two decentralized algorithms

Best Response (BR) / Simultaneous Improving Response (SIR)
Require: $\boldsymbol{x}^{(0)}$, stopping criteria, γ

$$
k \leftarrow 0
$$

while not stopping criteria do
for $n=1$ to N do

$$
\begin{aligned}
& S_{n}^{(k)}=\sum_{m<n} \boldsymbol{x}_{m}^{(k+1)}+\sum_{m>n} x_{m}^{(k)} \\
& \boldsymbol{x}_{n}^{(k+1)} \leftarrow \operatorname{BR}_{n}\left(S_{n}^{(k)}\right)=\underset{x_{n} \in \mathcal{X}_{n}}{\operatorname{argmin}} \sum_{t} x_{n, t} c_{t}\left(S_{n, t}^{(k)}+x_{n, t}\right) \\
& x_{n}^{(k+1)} \leftarrow \Pi_{\mathcal{X}_{n}}\left(x_{n}^{(k)}-\gamma \nabla_{n} b_{n}\left(x_{n}^{(k)}, x_{-n}^{(k)}\right)\right)
\end{aligned}
$$

done

$$
k \leftarrow k+1
$$

done

rm: sequential/simultaneous: SIR can be parallelized, but not BR (divergence)!

Two decentralized algorithms

Best Response (BR) / Simultaneous Improving Response (SIR)
Require: $\boldsymbol{x}^{(0)}$, stopping criteria, γ

$$
k \leftarrow 0
$$

while not stopping criteria do
for $n=1$ to N do

$$
\begin{aligned}
& S_{n}^{(k)}=\sum_{m<n} \boldsymbol{x}_{m}^{(k+1)}+\sum_{m>n} x_{m}^{(k)} \\
& \boldsymbol{x}_{n}^{(k+1)} \leftarrow \operatorname{BR}_{n}\left(S_{n}^{(k)}\right)=\underset{x_{n} \in \mathcal{X}_{n}}{\operatorname{argmin}} \sum_{t} x_{n, t} c_{t}\left(S_{n, t}^{(k)}+x_{n, t}\right) \\
& x_{n}^{(k+1)} \leftarrow \Pi_{\mathcal{X}_{n}}\left(x_{n}^{(k)}-\gamma \nabla_{n} b_{n}\left(x_{n}^{(k)}, x_{-n}^{(k)}\right)\right)
\end{aligned}
$$

done

$$
k \leftarrow k+1
$$

done

rm: sequential/simultaneous: SIR can be parallelized, but not BR (divergence)!

Two decentralized algorithms

Best Response (BR) / Simultaneous Improving Response (SIR)
Require: $\boldsymbol{x}^{(0)}$, stopping criteria, γ

$$
k \leftarrow 0
$$

while not stopping criteria do
for $n=1$ to N do

$$
\begin{aligned}
& S_{n}^{(k)}=\sum_{m<n} \boldsymbol{x}_{m}^{(k+1)}+\sum_{m>n} x_{m}^{(k)} \\
& \boldsymbol{x}_{n}^{(k+1)} \leftarrow \operatorname{BR}_{n}\left(S_{n}^{(k)}\right)=\underset{x_{n} \in \mathcal{X}_{n}}{\operatorname{argmin}} \sum_{t} x_{n, t} c_{t}\left(S_{n, t}^{(k)}+x_{n, t}\right) \\
& x_{n}^{(k+1)} \leftarrow \Pi_{\mathcal{X}_{n}}\left(x_{n}^{(k)}-\gamma \nabla_{n} b_{n}\left(x_{n}^{(k)}, x_{-n}^{(k)}\right)\right)
\end{aligned}
$$

done

$$
k \leftarrow k+1
$$

done

rm: sequential/simultaneous: SIR can be parallelized, but not BR (divergence)!

Two decentralized algorithms

Best Response (BR) / Simultaneous Improving Response (SIR)
Require: $\boldsymbol{x}^{(0)}$, stopping criteria, γ

$$
k \leftarrow 0
$$

while not stopping criteria do
for $n=1$ to N do

$$
\begin{aligned}
& S_{n}^{(k)}=\sum_{m<n} \boldsymbol{x}_{m}^{(k+1)}+\sum_{m>n} x_{m}^{(k)} \\
& \boldsymbol{x}_{n}^{(k+1)} \leftarrow \operatorname{BR}_{n}\left(S_{n}^{(k)}\right)=\underset{x_{n} \in \mathcal{X}_{n}}{\operatorname{argmin}} \sum_{t} x_{n, t} c_{t}\left(S_{n, t}^{(k)}+x_{n, t}\right) \\
& x_{n}^{(k+1)} \leftarrow \Pi_{\mathcal{X}_{n}}\left(x_{n}^{(k)}-\gamma \nabla_{n} b_{n}\left(x_{n}^{(k)}, x_{-n}^{(k)}\right)\right)
\end{aligned}
$$

done

$$
k \leftarrow k+1
$$

done

rm: sequential/simultaneous: SIR can be parallelized, but not BR (divergence)!

Two decentralized algorithms

Best Response (BR) / Simultaneous Improving Response (SIR)
Require: $\boldsymbol{x}^{(0)}$, stopping criteria, γ

$$
k \leftarrow 0
$$

while not stopping criteria do
for $n=1$ to N do

$$
\begin{aligned}
& S_{n}^{(k)}=\sum_{m<n} \boldsymbol{x}_{m}^{(k+1)}+\sum_{m>n} x_{m}^{(k)} \\
& \boldsymbol{x}_{n}^{(k+1)} \leftarrow \operatorname{BR}_{n}\left(S_{n}^{(k)}\right)=\underset{x_{n} \in \mathcal{X}_{n}}{\operatorname{argmin}} \sum_{t} x_{n, t} c_{t}\left(S_{n, t}^{(k)}+x_{n, t}\right) \\
& x_{n}^{(k+1)} \leftarrow \Pi_{\mathcal{X}_{n}}\left(x_{n}^{(k)}-\gamma \nabla_{n} b_{n}\left(x_{n}^{(k)}, x_{-n}^{(k)}\right)\right)
\end{aligned}
$$

done

$$
k \leftarrow k+1
$$

done

rm: sequential/simultaneous: SIR can be parallelized, but not BR (divergence)!

Two decentralized algorithms

Best Response (BR) / Simultaneous Improving Response (SIR)
Require: $\boldsymbol{x}^{(0)}$, stopping criteria, γ

$k \leftarrow 0$

while not stopping criteria do
for $n=1$ to N do

$$
\begin{aligned}
& S_{n}^{(k)}=\sum_{m<n} \boldsymbol{x}_{m}^{(k+1)}+\sum_{m>n} x_{m}^{(k)} \\
& \boldsymbol{x}_{n}^{(k+1)} \leftarrow \operatorname{BR}_{n}\left(S_{n}^{(k)}\right)=\underset{x_{n} \in \mathcal{X}_{n}}{\operatorname{argmin}} \sum_{t} x_{n, t} c_{t}\left(S_{n, t}^{(k)}+x_{n, t}\right) \\
& x_{n}^{(k+1)} \leftarrow \Pi_{\mathcal{X}_{n}}\left(x_{n}^{(k)}-\gamma \nabla_{n} b_{n}\left(x_{n}^{(k)}, x_{-n}^{(k)}\right)\right)
\end{aligned}
$$

done

$$
k \leftarrow k+1
$$

done

rm: sequential/simultaneous: SIR can be parallelized, but not BR (divergence)!

Two decentralized algorithms

Best Response (BR) / Simultaneous Improving Response (SIR)
Require: $\boldsymbol{x}^{(0)}$, stopping criteria, γ

$$
k \leftarrow 0
$$

while not stopping criteria do
for $n=1$ to N do

$$
\begin{aligned}
& S_{n}^{(k)}=\sum_{m<n} x_{m}^{(k+1)}+\sum_{m>n} x_{m}^{(k)} \\
& \boldsymbol{x}_{n}^{(k+1)} \leftarrow \operatorname{BR}_{n}\left(S_{n}^{(k)}\right)=\underset{x_{n} \in \mathcal{X}_{n}}{\operatorname{argmin}} \sum_{t} x_{n, t} c_{t}\left(S_{n, t}^{(k)}+x_{n, t}\right) \\
& x_{n}^{(k+1)} \leftarrow \Pi_{\mathcal{X}_{n}}\left(x_{n}^{(k)}-\gamma \nabla_{n} b_{n}\left(x_{n}^{(k)}, x_{-n}^{(k)}\right)\right)
\end{aligned}
$$

done

$$
k \leftarrow k+1
$$

done

rm: sequential/simultaneous: SIR can be parallelized, but not BR (divergence)!

(Fast) Convergence Results

Theorem (Jacquot, Beaude, Gaubert, and Oudjane, 2019)

With affine prices for each $t, c_{t}\left(X_{t}\right)=\alpha_{t}+\beta_{t} X_{t}$ with $\alpha_{t} \geq 0, \beta_{t}>0$, the sequence generated by $B R$ converge to the $N E \hat{x}$ with:

$$
\left\|\boldsymbol{x}^{(k)}-\hat{\boldsymbol{x}}\right\|_{2} \leq C N \times \frac{1}{\sqrt{k}}
$$

(Fast) Convergence Results

Theorem (Jacquot, Beaude, Gaubert, and Oudjane, 2019)

With affine prices for each $t, c_{t}\left(X_{t}\right)=\alpha_{t}+\beta_{t} X_{t}$ with $\alpha_{t} \geq 0, \beta_{t}>0$, the sequence generated by $B R$ converge to the $N E \hat{x}$ with:

$$
\left\|\boldsymbol{x}^{(k)}-\hat{\boldsymbol{x}}\right\|_{2} \leq C N \times \frac{1}{\sqrt{k}}
$$

Idea: \mathcal{G} is a potential game use results on block coordinate minimization.

(Fast) Convergence Results

Theorem (Jacquot, Beaude, Gaubert, and Oudjane, 2019)

With affine prices for each $t, c_{t}\left(X_{t}\right)=\alpha_{t}+\beta_{t} X_{t}$ with $\alpha_{t} \geq 0, \beta_{t}>0$, the sequence generated by $B R$ converge to the $N E \hat{\boldsymbol{x}}$ with:

$$
\left\|\boldsymbol{x}^{(k)}-\hat{\boldsymbol{x}}\right\|_{2} \leq C N \times \frac{1}{\sqrt{k}}
$$

Idea: \mathcal{G} is a potential game use results on block coordinate minimization.

Theorem (Jacquot, Beaude, Gaubert, and Oudjane, 2019)

If the operator $\hat{F}(\boldsymbol{x})=\left(\nabla_{\boldsymbol{x}_{n}} b_{n}(\boldsymbol{x})\right)_{n}$ is a-strongly monotone on \mathcal{X}, the sequence generated by SIR converge to the NE \hat{x} with:

$$
\left\|\hat{\boldsymbol{x}}-\boldsymbol{x}^{(k)}\right\|_{2}<\left(1-\frac{a^{2}}{N M^{2}}\right)^{k}\left\|\hat{\boldsymbol{x}}-\boldsymbol{x}^{(0)}\right\|_{2}
$$

(Fast) Convergence Results

Theorem (Jacquot, Beaude, Gaubert, and Oudjane, 2019)

With affine prices for each $t, c_{t}\left(X_{t}\right)=\alpha_{t}+\beta_{t} X_{t}$ with $\alpha_{t} \geq 0, \beta_{t}>0$, the sequence generated by $B R$ converge to the $N E \hat{\boldsymbol{x}}$ with:

$$
\left\|\boldsymbol{x}^{(k)}-\hat{\boldsymbol{x}}\right\|_{2} \leq C N \times \frac{1}{\sqrt{k}}
$$

Idea: \mathcal{G} is a potential game use results on block coordinate minimization.

Theorem (Jacquot, Beaude, Gaubert, and Oudjane, 2019)

If the operator $\hat{F}(\boldsymbol{x})=\left(\nabla_{\boldsymbol{x}_{n}} b_{n}(\boldsymbol{x})\right)_{n}$ is a-strongly monotone on \mathcal{X}, the sequence generated by SIR converge to the NE \hat{x} with:

$$
\left\|\hat{\boldsymbol{x}}-\boldsymbol{x}^{(k)}\right\|_{2}<\left(1-\frac{\mathrm{a}^{2}}{N M^{2}}\right)^{k}\left\|\hat{\boldsymbol{x}}-\boldsymbol{x}^{(0)}\right\|_{2}
$$

Idea: use Euclidean structure, $\nabla_{n} b_{n}$ Lipschitz and the strong monotonicity

Online versus Offline procedure

- Online procedure: consider forecast updates on parameters in a stochastic environment:

Online versus Offline procedure

- Online procedure: consider forecast updates on parameters in a stochastic environment:
- e.g. prices are determined by nonflexible load - need forecasts

Online versus Offline procedure

- Online procedure: consider forecast updates on parameters in a stochastic environment:
- e.g. prices are determined by nonflexible load - need forecasts

Forecasts of nonflexible Demand

Online procedure: compute NE on "receding horizons"

```
Start at t=1
while t\leqT do
    Set new horizon }\mp@subsup{\mathcal{T}}{}{(t)}={t,t+1,\ldots,T
```


Online procedure: compute NE on "receding horizons"

```
Start at t=1
while t\leqT do
    Set new horizon }\mp@subsup{\mathcal{T}}{}{(t)}={t,t+1,\ldots,T
    Get D forecast on }\mp@subsup{\mathcal{T}}{}{(t)}:\mp@subsup{\hat{\boldsymbol{D}}}{}{(t)}\stackrel{\mathrm{ def }}{=}(\mp@subsup{\hat{D}}{}{(t)}\mp@subsup{}{s}{}\mp@subsup{)}{t\leqs\leqT}{
```


Online procedure: compute NE on "receding horizons"

```
Start at t=1
while t\leqT do
    Set new horizon }\mp@subsup{\mathcal{T}}{}{(t)}={t,t+1,\ldots,T
    Get D forecast on }\mp@subsup{\mathcal{T}}{}{(t)}:\mp@subsup{\hat{\boldsymbol{D}}}{}{(t)}\stackrel{\mathrm{ def }}{=}(\mp@subsup{\hat{D}}{}{(t)}\mp@subsup{}{s}{}\mp@subsup{)}{t\leqs\leqT}{
```


Online procedure: compute NE on "receding horizons"

```
Start at \(t=1\)
while \(t \leq T\) do
    Set new horizon \(\mathcal{T}^{(t)}=\{t, t+1, \ldots, T\}\)
    Get \(\boldsymbol{D}\) forecast on \(\mathcal{T}^{(t)}: \hat{\boldsymbol{D}}^{(t)} \stackrel{\text { def }}{=}\left(\hat{D}^{(t)}{ }_{s}\right)_{t \leq s \leq T}\)
    Re-compute prices \(c_{t}(\).\() for t \in \mathcal{T}^{(t)}\) with \(\hat{\boldsymbol{D}}\)
    Compute NE \(\boldsymbol{x}^{(t)}\) on \(\mathcal{T}^{(t)}\)
```


Online procedure: compute NE on "receding horizons"

Start at $t=1$
while $t \leq T$ do
Set new horizon $\mathcal{T}^{(t)}=\{t, t+1, \ldots, T\}$
Get \boldsymbol{D} forecast on $\mathcal{T}^{(t)}: \hat{\boldsymbol{D}}^{(t)} \stackrel{\text { def }}{=}\left(\hat{D}^{(t)}{ }_{s}\right)_{t \leq s \leq T}$
Re-compute prices $c_{t}($.$) for t \in \mathcal{T}^{(t)}$ with $\hat{\boldsymbol{D}}$
Compute NE $\boldsymbol{x}^{(t)}$ on $\mathcal{T}^{(t)}$
for each user $n \in \mathcal{N}$ do
Realize computed profile on time $t, x_{n, t}^{(t)}$
Update $\mathcal{X}_{n}^{(t+1)} \stackrel{\text { def }}{=}\left\{\left(x_{n, s}\right)_{s>t} \mid\left(x_{n, t}^{(t)},\left[x_{n, s}\right]_{s>t}\right) \in \mathcal{X}_{n}^{(t)}\right\}$

Online procedure: compute NE on "receding horizons"

```
Start at t=1
while t\leqT do
    Set new horizon }\mp@subsup{\mathcal{T}}{}{(t)}={t,t+1,\ldots,T
    Get \boldsymbol{D}\mathrm{ forecast on }\mp@subsup{\mathcal{T}}{}{(t)}:\mp@subsup{\hat{\boldsymbol{D}}}{}{(t)}\stackrel{\mathrm{ def }}{=}(\mp@subsup{\hat{D}}{}{(t)}\mp@subsup{}{s}{}\mp@subsup{)}{t\leqs\leqT}{}
    Re-compute prices ct(.) for t\in (\mathcal{T}}\mp@subsup{}{(t)}{\mathrm{ with }}\hat{\boldsymbol{D}
    Compute NE \mp@subsup{\boldsymbol{x}}{}{(t)}\mathrm{ on }\mp@subsup{\mathcal{T}}{}{(t)}
    for each user n}\boldsymbol{n}\mathcal{N}\mathrm{ do
    Realize computed profile on time t, \mp@subsup{x}{n,t}{(t)}
    Update }\mp@subsup{\mathcal{X}}{n}{(t+1)}\stackrel{\mathrm{ def }}{=}{(\mp@subsup{x}{n,s}{}\mp@subsup{)}{s>t }{}|(\mp@subsup{x}{n,t}{(t)},[\mp@subsup{x}{n,s}{,}\mp@subsup{]}{s>t}{})\in\mp@subsup{\mathcal{X}}{n}{(t)}
    done
    Wait for t+1
done
```


Online procedure: compute NE on "receding horizons"

```
Start at \(t=1\)
while \(t \leq T\) do
    Set new horizon \(\mathcal{T}^{(t)}=\{t, t+1, \ldots, T\}\)
    Get \(\boldsymbol{D}\) forecast on \(\mathcal{T}^{(t)}: \hat{\boldsymbol{D}}^{(t)} \stackrel{\text { def }}{=}\left(\hat{D}^{(t)}{ }_{s}\right)_{t \leq s \leq T}\)
    Re-compute prices \(c_{t}(\).\() for t \in \mathcal{T}^{(t)}\) with \(\hat{\boldsymbol{D}}\)
    Compute NE \(\boldsymbol{x}^{(t)}\) on \(\mathcal{T}^{(t)}\)
    for each user \(n \in \mathcal{N}\) do
        Realize computed profile on time \(t, x_{n, t}^{(t)}\)
        Update \(\mathcal{X}_{n}^{(t+1)} \stackrel{\text { def }}{=}\left\{\left(x_{n, s}\right)_{s>t} \mid\left(x_{n, t}^{(t)},\left[x_{n, s}\right]_{s>t}\right) \in \mathcal{X}_{n}^{(t)}\right\}\)
    done
    Wait for \(t+1\)
done
```


Proposition (Jacquot, Beaude, Gaubert, and Oudjane, 2019)

Under NE uniqueness and in the limit of perfect forecasts, the obtained profile $\left(x_{n, t}^{(t)}\right)_{n, t}$ is an NE for the complete horizon $\{1, \ldots, T\}$.

Online procedure achieves significant gains!

Cons. Scenario	Social Cost	Avg. Price	Gain
Uncoordinated	$\$ 1257.2$	$0.200 \$ / \mathrm{kWh}$	-
Offline DR	$\$ 1231.6$	$0.195 \$ / \mathrm{kWh}$	2.036%
Online DR	$\$ 1131.1$	$0.180 \$ / \mathrm{kWh}$	$\mathbf{1 0 . 0 3 \%}$
Perfect forecast DR	$\$ 1075.2$	$0.171 \$ / \mathrm{kWh}$	14.47%
Optimal scenario	$\$ 1056.8$	$0.169 \$ / \mathrm{kWh}$	15.94%

Part III

Estimation of Equilibria of Large Heterogeneous Congestion Games

Atomic (splittable) congestion game $\mathcal{G}(\mathcal{A})$

- time horizon as a finite set $\mathcal{T}=\{1, \ldots, T\}$;
- set of agents $\mathcal{N}=\{1, \ldots, N\}$;
- each $n \in \mathcal{N}$ has a feasibility set \mathcal{X}_{n} of (consumption) profiles $\left(x_{n, t}\right)_{t \in \mathcal{T}}$;
- $\forall t$, a cost function $c_{t}: \mathbb{R}_{+} \rightarrow \mathbb{R}$

Atomic (splittable) congestion game $\mathcal{G}(\mathcal{A})$

- time horizon as a finite set $\mathcal{T}=\{1, \ldots, T\}$;
- set of agents $\mathcal{N}=\{1, \ldots, N\}$;
- each $n \in \mathcal{N}$ has a feasibility set \mathcal{X}_{n} of (consumption) profiles $\left(x_{n, t}\right)_{t \in \mathcal{T}}$;
- $\forall t$, a cost function $c_{t}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ function of the average action: $\overline{\boldsymbol{X}}=\left(\bar{X}_{t}\right)_{t} \stackrel{\text { def }}{=}\left(\frac{1}{N} \sum_{n} x_{n t}\right)_{t} \in \overline{\mathcal{X}}=\left\{\frac{1}{N} \sum_{n} \boldsymbol{x}_{n}: \boldsymbol{x} \in \mathcal{X}\right\}$;

Atomic (splittable) congestion game $\mathcal{G}(\mathcal{A})$

- time horizon as a finite set $\mathcal{T}=\{1, \ldots, T\}$;
- set of agents $\mathcal{N}=\{1, \ldots, N\}$;
- each $n \in \mathcal{N}$ has a feasibility set \mathcal{X}_{n} of (consumption) profiles $\left(x_{n, t}\right)_{t \in \mathcal{T}}$;
- $\forall t$, a cost function $c_{t}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ function of the average action: $\overline{\boldsymbol{X}}=\left(\bar{X}_{t}\right)_{t} \stackrel{\text { def }}{=}\left(\frac{1}{N} \sum_{n} x_{n t}\right)_{t} \in \overline{\mathcal{X}}=\left\{\frac{1}{N} \sum_{n} \boldsymbol{x}_{n}: \boldsymbol{x} \in \mathcal{X}\right\}$;
- $\forall n \in \mathcal{N}$, an individual utility function $u_{n}: \mathcal{X}_{n} \rightarrow \mathbb{R}$

Atomic (splittable) congestion game $\mathcal{G}(\mathcal{A})$

- time horizon as a finite set $\mathcal{T}=\{1, \ldots, T\}$;
- set of agents $\mathcal{N}=\{1, \ldots, N\}$;
- each $n \in \mathcal{N}$ has a feasibility set \mathcal{X}_{n} of (consumption) profiles $\left(x_{n, t}\right)_{t \in \mathcal{T}}$;
- $\forall t$, a cost function $c_{t}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ function of the average action: $\overline{\boldsymbol{X}}=\left(\bar{X}_{t}\right)_{t} \stackrel{\text { def }}{=}\left(\frac{1}{N} \sum_{n} x_{n t}\right)_{t} \in \overline{\mathcal{X}}=\left\{\frac{1}{N} \sum_{n} \boldsymbol{x}_{n}: \boldsymbol{x} \in \mathcal{X}\right\}$;
- $\forall n \in \mathcal{N}$, an individual utility function $u_{n}: \mathcal{X}_{n} \rightarrow \mathbb{R}$
- player n has the cost function to minimize:

$$
f_{n}\left(x_{n}, \bar{X}\right) \stackrel{\text { def }}{=} \sum_{t} x_{n t} c_{t}\left(\bar{X}_{t}\right)-u_{n}\left(\boldsymbol{x}_{n}\right)
$$

Atomic (splittable) congestion game $\mathcal{G}(\mathcal{A})$

- time horizon as a finite set $\mathcal{T}=\{1, \ldots, T\}$;
- set of agents $\mathcal{N}=\{1, \ldots, N\}$;
- each $n \in \mathcal{N}$ has a feasibility set \mathcal{X}_{n} of (consumption) profiles $\left(x_{n, t}\right)_{t \in \mathcal{T}}$;
- $\forall t$, a cost function $c_{t}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ function of the average action: $\overline{\boldsymbol{X}}=\left(\bar{X}_{t}\right)_{t} \stackrel{\text { def }}{=}\left(\frac{1}{N} \sum_{n} x_{n t}\right)_{t} \in \overline{\mathcal{X}}=\left\{\frac{1}{N} \sum_{n} \boldsymbol{x}_{n}: \boldsymbol{x} \in \mathcal{X}\right\}$;
- $\forall n \in \mathcal{N}$, an individual utility function $u_{n}: \mathcal{X}_{n} \rightarrow \mathbb{R}$
- player n has the cost function to minimize:

$$
f_{n}\left(x_{n}, \bar{X}\right) \stackrel{\text { def }}{=} \sum_{t} x_{n t} c_{t}\left(\bar{X}_{t}\right)-u_{n}\left(\boldsymbol{x}_{n}\right)
$$

- a coupling constraint set $\mathcal{A} \subset \mathbb{R}^{T}$ defining constraint $\overline{\boldsymbol{X}} \in \mathcal{A}$.

Nash equilibrium

Assumption (A1)

(1) $\forall t, c_{t}$ is convex and non-decreasing on \mathbb{R}_{+}.
(2) $\forall n, \mathcal{X}_{n}$ is a convex and compact subset of \mathbb{R}_{+}^{T} with nonempty relative interior.
(3) $\forall n, u_{n}$ is concave on \mathcal{X}_{n}.
(4) \mathcal{A} is a convex closed set of \mathbb{R}^{T}, and $\overline{\mathcal{X}} \cap \mathcal{A}$ is nonempty.

Nash equilibrium

Assumption (A1)

(1) $\forall t, c_{t}$ is convex and non-decreasing on \mathbb{R}_{+}.
(2) $\forall n, \mathcal{X}_{n}$ is a convex and compact subset of \mathbb{R}_{+}^{T} with nonempty relative interior.
(3) $\forall n, u_{n}$ is concave on \mathcal{X}_{n}.
(4) \mathcal{A} is a convex closed set of \mathbb{R}^{T}, and $\overline{\mathcal{X}} \cap \mathcal{A}$ is nonempty.

Differentiable case:

Definition (NE (No coupling constraint $\Leftrightarrow \mathcal{A}=\mathbb{R}^{T}$))

Action profile $\boldsymbol{x} \in \mathcal{X}$ is a Nash equilibrium (NE) if:

$$
\begin{aligned}
& \forall n \in \mathcal{N}, f_{n}\left(\boldsymbol{x}_{n}, \frac{1}{N} \boldsymbol{x}_{n}+\overline{\boldsymbol{X}}_{-n}\right) \leq f_{n}\left(\boldsymbol{y}_{n}, \frac{1}{N} \boldsymbol{x}_{n}+\overline{\boldsymbol{X}}_{-n}\right), \quad \forall \boldsymbol{y}_{n} \in \mathcal{X}_{n} \\
& \Longleftrightarrow\langle\hat{F}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle \geq 0, \quad \forall \boldsymbol{y} \in \boldsymbol{X}, \\
& \text { with }[\hat{F}(\boldsymbol{x})]_{n} \stackrel{\text { def }}{=} \nabla_{\boldsymbol{x}_{n}} f_{n}\left(\boldsymbol{x}_{n}, \overline{\boldsymbol{X}}\right)=\boldsymbol{c}(\overline{\boldsymbol{X}})+\left(\frac{x_{n t}}{N} c_{t}^{\prime}\left(\bar{X}_{t}\right)\right)_{t}-\nabla u_{n}\left(\boldsymbol{x}_{n}\right)
\end{aligned}
$$

Nash equilibrium

Assumption (A1)

(1) $\forall t, c_{t}$ is convex and non-decreasing on \mathbb{R}_{+}.
(2) $\forall n, \mathcal{X}_{n}$ is a convex and compact subset of \mathbb{R}_{+}^{T} with nonempty relative interior.
(3) $\forall n, u_{n}$ is concave on \mathcal{X}_{n}.
(4) \mathcal{A} is a convex closed set of \mathbb{R}^{T}, and $\overline{\mathcal{X}} \cap \mathcal{A}$ is nonempty.

Differentiable case:

Definition (VNE (With coupling constraint))

Profile $\boldsymbol{x} \in \mathcal{X}(\mathcal{A}) \stackrel{\text { def }}{=}\{\boldsymbol{x} \in \mathcal{X} \mid \overline{\boldsymbol{X}} \in \mathcal{A}\}$ is a Variational Nash Equilibrium (VNE):

$$
\langle\hat{F}(x), \boldsymbol{y}-\boldsymbol{x}\rangle \geq 0, \forall \boldsymbol{y} \in \mathcal{X}(\mathcal{A})
$$

with

$$
[\hat{F}(\boldsymbol{x})]_{n} \stackrel{\text { def }}{=} \nabla_{\boldsymbol{x}_{n}} f_{n}\left(\boldsymbol{x}_{n}, \overline{\boldsymbol{X}}\right)=\boldsymbol{c}(\overline{\boldsymbol{X}})+\left(\frac{x_{n t}}{N} c_{t}^{\prime}\left(\bar{X}_{t}\right)\right)_{t}-\nabla u_{n}\left(\boldsymbol{x}_{n}\right)
$$

Two steps of Approximation: $\mathcal{G}(\mathcal{A}) \longrightarrow \mathcal{G}^{\text {na }}(\mathcal{A}) \longrightarrow \mathcal{G}^{\mathcal{I}}(\mathcal{A})$

Initial GAME

$$
\mathcal{G}(\mathcal{A}) \quad \longrightarrow \quad \mathcal{G}^{\mathrm{na}}(\mathcal{A})
$$

VNE \hat{x} in $\operatorname{dim} \mathbb{R}^{N T}$

NONATOMIC GAME

SVWE x^{*} in $\operatorname{dim} \mathbb{R}^{N T}$
neglect individual impact on average action $\overline{\boldsymbol{X}}$

Two steps of Approximation: $\mathcal{G}(\mathcal{A}) \longrightarrow \mathcal{G}^{\mathrm{na}}(\mathcal{A}) \longrightarrow \mathcal{G}^{\mathcal{I}}(\mathcal{A})$

INITIAL GAME

$$
\mathcal{G}(\mathcal{A}) \quad \longrightarrow \quad \mathcal{G}^{\text {na }}(\mathcal{A})
$$

SVWE \boldsymbol{x}^{*} in $\operatorname{dim} \mathbb{R}^{N T}$
VNE $\hat{\boldsymbol{x}}$ in $\operatorname{dim} \mathbb{R}^{N T}$

AgGregate game

$$
\longrightarrow \quad \mathcal{G}^{\mathcal{I}}(\mathcal{A})
$$

SVWE \boldsymbol{x} in $\operatorname{dim} \mathbb{R}^{p T}$
neglect individual impact on average action $\overline{\boldsymbol{X}}$

Nonatomic game

> reduce dimension by clustering similar players

Fisrt step: Associated nonatomic game $\mathcal{G}^{\text {na }}(\mathcal{A})$ and SVWE

- each atomic player $n \in \mathcal{N}$ of $\mathcal{G}(\mathcal{A}) \rightarrow$ population of nonatomic players in $\mathcal{G}^{\text {na }}(\mathcal{A})$

Fisrt step: Associated nonatomic game $\mathcal{G}^{\text {na }}(\mathcal{A})$ and SVWE

- each atomic player $n \in \mathcal{N}$ of $\mathcal{G}(\mathcal{A}) \rightarrow$ population of nonatomic players in $\mathcal{G}^{\text {na }}(\mathcal{A})$
- symmetric action profiles: in $\mathcal{G}^{\text {na }}(\mathcal{A})$, all players in each population n play the same action \boldsymbol{x}_{n}.

Fisrt step: Associated nonatomic game $\mathcal{G}^{\text {na }}(\mathcal{A})$ and SVWE

- each atomic player $n \in \mathcal{N}$ of $\mathcal{G}(\mathcal{A}) \rightarrow$ population of nonatomic players in $\mathcal{G}^{\text {na }}(\mathcal{A})$
- symmetric action profiles: in $\mathcal{G}^{\text {na }}(\mathcal{A})$, all players in each population n play the same action \boldsymbol{x}_{n}.

Definition

Action profile $\boldsymbol{x} \in \mathcal{X}(\mathcal{A}) \stackrel{\text { def }}{=}\{\boldsymbol{x} \in \mathcal{X} \mid \overline{\boldsymbol{X}} \in \mathcal{A}\}$ is a symmetric variational Wardrop equilibrium (SVWE) if

$$
\langle F(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle \geq 0, \forall \boldsymbol{y} \in \mathcal{X}(\mathcal{A})
$$

with

$$
[F(\boldsymbol{x})]_{n} \stackrel{\text { def }}{=} \nabla_{1} f_{n}\left(\boldsymbol{x}_{n}, \overline{\boldsymbol{X}}\right)=\boldsymbol{c}(\overline{\boldsymbol{X}})-\nabla u_{n}\left(\boldsymbol{x}_{n}\right)
$$

Fisrt step: Associated nonatomic game $\mathcal{G}^{\mathrm{na}}(\mathcal{A})$ and SVWE

- each atomic player $n \in \mathcal{N}$ of $\mathcal{G}(\mathcal{A}) \rightarrow$ population of nonatomic players in $\mathcal{G}^{\text {na }}(\mathcal{A})$
- symmetric action profiles: in $\mathcal{G}^{\text {na }}(\mathcal{A})$, all players in each population n play the same action \boldsymbol{x}_{n}.

Definition

Action profile $\boldsymbol{x} \in \mathcal{X}(\mathcal{A}) \stackrel{\text { def }}{=}\{\boldsymbol{x} \in \mathcal{X} \mid \overline{\boldsymbol{X}} \in \mathcal{A}\}$ is a symmetric variational Wardrop equilibrium (SVWE) if

$$
\langle F(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle \geq 0, \forall \boldsymbol{y} \in \mathcal{X}(\mathcal{A})
$$

with

$$
[F(\boldsymbol{x})]_{n} \stackrel{\text { def }}{=} \nabla_{1} f_{n}\left(\boldsymbol{x}_{n}, \overline{\boldsymbol{X}}\right)=\boldsymbol{c}(\overline{\boldsymbol{X}})-\nabla u_{n}\left(\boldsymbol{x}_{n}\right)
$$

Proposition (Existence of VNE and SVWE)

Under A1, $\mathcal{G}(\mathcal{A})$ (resp. $\left.\mathcal{G}^{\text {na }}(\mathcal{A})\right)$ admits a VNE (resp. SVWE).

First step of approximation: $\mathcal{G}(\mathcal{A}) \longrightarrow \mathcal{G}^{\mathrm{na}}(\mathcal{A})$

Theorem (Jacquot, Wan, Beaude, and Oudjane, 2018)

Under $A 1$, let $\boldsymbol{x} \in \mathcal{X}(\mathcal{A})$ be a VNE of $\mathcal{G}(\mathcal{A})$ and $\boldsymbol{x}^{*} \in \mathcal{X}(\mathcal{A})$ a SVWE of $\mathcal{G}^{\text {na }}(\mathcal{A})$:
(1) if for each $n \in \mathcal{N}, u_{n}$ is a α-strongly concave $(\alpha>0)$ then \boldsymbol{x}^{*} is unique and:

$$
\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\| \leq \frac{M C}{\alpha} \sqrt{\frac{T}{N}}, \quad \text { where } M \stackrel{\text { def }}{=} \max _{\substack{x \in \overline{C V}\left(\cup \cup_{n} \mathcal{X}_{n}\right) \\ t \in \mathcal{T}}}\left|x_{t}\right| ; C=\max _{\substack{x \in \overline{\mathcal{V}} \\ t \in \mathcal{T}}}\left|c_{t}^{\prime}\left(\bar{X}_{t}\right)\right|
$$

besides, $\frac{1}{N} \sum_{n}\left\|\boldsymbol{x}_{n}-\boldsymbol{x}_{n}^{*}\right\| \leq \frac{M C}{\alpha} \frac{\sqrt{T}}{N}$ and $\quad\left\|\overline{\boldsymbol{X}}-\overline{\boldsymbol{X}}^{*}\right\| \leq \frac{M C}{\alpha} \frac{\sqrt{T}}{N}$;

First step of approximation: $\mathcal{G}(\mathcal{A}) \longrightarrow \mathcal{G}^{\mathrm{na}}(\mathcal{A})$

Theorem (Jacquot, Wan, Beaude, and Oudjane, 2018)

Under $A 1$, let $\boldsymbol{x} \in \mathcal{X}(\mathcal{A})$ be a VNE of $\mathcal{G}(\mathcal{A})$ and $\boldsymbol{x}^{*} \in \mathcal{X}(\mathcal{A})$ a SVWE of $\mathcal{G}^{\text {na }}(\mathcal{A})$:
(1) if for each $n \in \mathcal{N}, u_{n}$ is a α-strongly concave $(\alpha>0)$ then \boldsymbol{x}^{*} is unique and:

$$
\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\| \leq \frac{M C}{\alpha} \sqrt{\frac{T}{N}}, \quad \text { where } M \stackrel{\text { def }}{=} \max _{\substack{x \in \overline{c v}\left(\cup \mathcal{X}^{\prime} \mathcal{X}_{n}\right) \\ t \in \mathcal{T}}}\left|x_{t}\right| ; \quad C=\max _{\substack{\boldsymbol{x} \in \mathcal{X} \\ t \in \mathcal{T}}}\left|c_{t}^{\prime}\left(\bar{X}_{t}\right)\right|
$$

besides, $\quad \frac{1}{N} \sum_{n}\left\|\boldsymbol{x}_{n}-\boldsymbol{x}_{n}^{*}\right\| \leq \frac{M C}{\alpha} \frac{\sqrt{T}}{N}$ and $\quad\left\|\overline{\boldsymbol{X}}-\overline{\boldsymbol{X}}^{*}\right\| \leq \frac{M C}{\alpha} \frac{\sqrt{T}}{N}$;
(2) if $\left(c_{t}\right)_{t \in \mathcal{T}}$ is β-strongly monotone $(\beta>0)$ then $\overline{\boldsymbol{X}}^{*}$ is unique and:

$$
\left\|\overline{\boldsymbol{X}}-\overline{\boldsymbol{X}}^{*}\right\| \leq M \sqrt{\frac{2 T C}{\beta N}} .
$$

First step of approximation: $\mathcal{G}(\mathcal{A}) \longrightarrow \mathcal{G}^{\mathrm{na}}(\mathcal{A})$

Theorem (Jacquot, Wan, Beaude, and Oudjane, 2018)

Under A1, let $\boldsymbol{x} \in \mathcal{X}(\mathcal{A})$ be a VNE of $\mathcal{G}(\mathcal{A})$ and $\boldsymbol{x}^{*} \in \mathcal{X}(\mathcal{A})$ a SVWE of $\mathcal{G}^{\mathrm{na}}(\mathcal{A})$:
(1) if for each $n \in \mathcal{N}, u_{n}$ is a α-strongly concave $(\alpha>0)$ then \boldsymbol{x}^{*} is unique and:

$$
\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\| \leq \frac{M C}{\alpha} \sqrt{\frac{T}{N}}, \quad \text { where } M \stackrel{\text { def }}{=} \max _{\substack{x \in \overline{C v}\left(\cup \cup_{n} \mathcal{X}_{n}\right) \\ t \in \mathcal{T}}}\left|x_{t}\right| ; C=\max _{\substack{x \in \overline{\mathcal{V}} \\ t \in \mathcal{T}}}\left|c_{t}^{\prime}\left(\bar{X}_{t}\right)\right|
$$

besides, $\quad \frac{1}{N} \sum_{n}\left\|\boldsymbol{x}_{n}-\boldsymbol{x}_{n}^{*}\right\| \leq \frac{M C}{\alpha} \frac{\sqrt{T}}{N}$ and $\quad\left\|\overline{\boldsymbol{X}}-\overline{\boldsymbol{X}}^{*}\right\| \leq \frac{M C}{\alpha} \frac{\sqrt{T}}{N}$;
(2) if $\left(c_{t}\right)_{t \in \mathcal{T}}$ is β-strongly monotone $(\beta>0)$ then $\overline{\boldsymbol{X}}^{*}$ is unique and:

$$
\left\|\overline{\boldsymbol{X}}-\overline{\boldsymbol{X}}^{*}\right\| \leq M \sqrt{\frac{2 T C}{\beta N}} .
$$

Idea: use the VI charac of VNE/SVWE \boldsymbol{l} difference lying in individual impact

Second step: Clustering of populations in $\mathcal{G}^{\text {na }}(\mathcal{A}) \rightarrow \mathcal{G}^{\mathcal{I}}(\mathcal{A})$

- Regroup similar populations of $\mathcal{G}^{\text {na }}(\mathcal{A})$ (i.e. $\mathcal{X}_{n} \simeq \mathcal{X}_{m}$ and $\nabla u_{n} \simeq \nabla u_{m}$) into a set \mathcal{I} of populations with small $p \stackrel{\text { def }}{=}|\mathcal{I}|$ and $\bigcup_{i \in \mathcal{I}} \mathcal{N}_{i}=\mathcal{N}$ and endow each cluster $i \in \mathcal{I}$ with:
- a common action set $\mathcal{X}_{i}\left(\right.$ within $\overline{c o n v} \cup_{n \in \mathcal{N}_{i}} \mathcal{X}_{n}$)
- a common utility (gradient) ∇u_{i} (within $\left.\max _{n \in \mathcal{N}_{i}}\left\|\nabla u_{n}\right\|_{\infty}\right)$ common cost f_{i};

Second step: Clustering of populations in $\mathcal{G}^{\mathrm{na}}(\mathcal{A}) \rightarrow \mathcal{G}^{\mathcal{I}}(\mathcal{A})$

- Regroup similar populations of $\mathcal{G}^{\text {na }}(\mathcal{A})$ (i.e. $\mathcal{X}_{n} \simeq \mathcal{X}_{m}$ and $\nabla u_{n} \simeq \nabla u_{m}$) into a set \mathcal{I} of populations with small $p \stackrel{\text { def }}{=}|\mathcal{I}|$ and $\bigcup_{i \in \mathcal{I}} \mathcal{N}_{i}=\mathcal{N}$ and endow each cluster $i \in \mathcal{I}$ with:
- a common action set $\mathcal{X}_{i}\left(\right.$ within $\overline{c o n v} \cup_{n \in \mathcal{N}_{i}} \mathcal{X}_{n}$)
- a common utility (gradient) $\nabla u_{i}\left(\right.$ within $\left.\max _{n \in \mathcal{N}_{i}}\left\|\nabla u_{n}\right\|_{\infty}\right)$ common cost f_{i};
- similarity of players in \mathcal{N}_{i} measured as:
for strategy sets $\left(\mathcal{X}_{n}\right)_{n \in \mathcal{N}_{i}}$

$$
\bar{\delta}=\max _{i \in \mathcal{I}} \delta_{i}
$$

where $\delta_{i} \stackrel{\text { def }}{=} \max _{n \in \mathcal{N}_{i}} d_{H}\left(\mathcal{X}_{n}, \mathcal{X}_{i}\right)$

Second step: Clustering of populations in $\mathcal{G}^{\mathrm{na}}(\mathcal{A}) \rightarrow \mathcal{G}^{\mathcal{I}}(\mathcal{A})$

- Regroup similar populations of $\mathcal{G}^{\text {na }}(\mathcal{A})$ (i.e. $\mathcal{X}_{n} \simeq \mathcal{X}_{m}$ and $\nabla u_{n} \simeq \nabla u_{m}$) into a set \mathcal{I} of populations with small $p \stackrel{\text { def }}{=}|\mathcal{I}|$ and $\bigcup_{i \in \mathcal{I}} \mathcal{N}_{i}=\mathcal{N}$ and endow each cluster $i \in \mathcal{I}$ with:
- a common action set $\mathcal{X}_{i}\left(\right.$ within $\overline{c o n v} \cup_{n \in \mathcal{N}_{i}} \mathcal{X}_{n}$)
- a common utility (gradient) $\nabla u_{i}\left(\right.$ within $\left.\max _{n \in \mathcal{N}_{i}}\left\|\nabla u_{n}\right\|_{\infty}\right)$ common cost f_{i};
- similarity of players in \mathcal{N}_{i} measured as:
for strategy sets $\left(\mathcal{X}_{n}\right)_{n \in \mathcal{N}_{i}}$

$$
\bar{\delta}=\max _{i \in \mathcal{I}} \delta_{i}
$$

where $\delta_{i} \stackrel{\text { def }}{=} \max _{n \in \mathcal{N}_{i}} d_{H}\left(\mathcal{X}_{n}, \mathcal{X}_{i}\right)$
for utility gradients $\left(\nabla u_{n}\right)_{n \in \mathcal{N}_{i}}$

$$
\bar{\lambda}=\max _{i \in \mathcal{I}} \lambda_{i}
$$

where $\lambda_{i} \xlongequal{\text { def }} \max _{n \in \mathcal{N}_{i}} \sup _{x \in \mathcal{X}_{i}}\left\|\nabla u_{i}(\boldsymbol{x})-\nabla u_{n}(\boldsymbol{x})\right\|_{2}$

Second step: Clustering of populations in $\mathcal{G}^{\text {na }}(\mathcal{A}) \rightarrow \mathcal{G}^{\mathcal{I}}(\mathcal{A})$

- Regroup similar populations of $\mathcal{G}^{\text {na }}(\mathcal{A})$ (i.e. $\mathcal{X}_{n} \simeq \mathcal{X}_{m}$ and $\nabla u_{n} \simeq \nabla u_{m}$) into a set \mathcal{I} of populations with small $p \stackrel{\text { def }}{=}|\mathcal{I}|$ and $\bigcup_{i \in \mathcal{I}} \mathcal{N}_{i}=\mathcal{N}$ and endow each cluster $i \in \mathcal{I}$ with:
- a common action set $\mathcal{X}_{i}\left(\right.$ within $\overline{c o n v} \cup_{n \in \mathcal{N}_{i}} \mathcal{X}_{n}$)
- a common utility (gradient) ∇u_{i} (within $\left.\max _{n \in \mathcal{N}_{i}}\left\|\nabla u_{n}\right\|_{\infty}\right)$ common cost f_{i};
- similarity of players in \mathcal{N}_{i} measured as:
for strategy sets $\left(\mathcal{X}_{n}\right)_{n \in \mathcal{N}_{i}}$

$$
\bar{\delta}=\max _{i \in \mathcal{I}} \delta_{i}
$$

where $\delta_{i} \stackrel{\text { def }}{=} \max _{n \in \mathcal{N}_{i}} d_{H}\left(\mathcal{X}_{n}, \mathcal{X}_{i}\right)$
for utility gradients $\left(\nabla u_{n}\right)_{n \in \mathcal{N}_{i}}$

$$
\bar{\lambda}=\max _{i \in \mathcal{I}} \lambda_{i}
$$

where $\lambda_{i} \stackrel{\text { def }}{=} \max _{n \in \mathcal{N}_{i}} \sup _{x \in \mathcal{X}_{i}}\left\|\nabla u_{i}(\boldsymbol{x})-\nabla u_{n}(\boldsymbol{x})\right\|_{2}$
symmetric profiles: all players in i play same action $\boldsymbol{x}_{i}-\overline{\boldsymbol{X}}=\frac{1}{N} \sum_{i \in \mathcal{I}} N_{i} \boldsymbol{x}_{\boldsymbol{i}}$

Second step of approximation $\mathcal{G}^{\text {na }}(\mathcal{A}) \rightarrow \mathcal{G}^{\mathcal{I}}(\mathcal{A})$

Theorem (Jacquot, Wan, Beaude, and Oudjane, 2018)

Under $A 1$, consider an approximating game $\mathcal{G}^{\mathcal{I}}(\mathcal{A})$ with $\bar{\delta}$ small enough. Let x be a SVWE of $\mathcal{G}^{\mathcal{I}}(\mathcal{A})$, and x^{*} a SVWE of $\mathcal{G}^{\text {na }}(\mathcal{A})$. Then:
(1) if $\forall n, u_{n}$ is α-strongly concave $(\alpha>0)$, then $\boldsymbol{x} \in \mathbb{R}^{T p}$ and $\boldsymbol{x}^{*} \in \mathbb{R}^{T N}$ are unique and

$$
\left\|\psi_{\mathcal{I} \rightarrow \mathcal{N}}(\boldsymbol{x})-\boldsymbol{x}^{*}\right\| \leq \sqrt{N \frac{\operatorname{err}(\bar{\delta}, \bar{\lambda})}{\alpha}} \text { where } \operatorname{err}(\bar{\delta}, \bar{\lambda}) \stackrel{\text { def }}{=} 2 T M\left(3 \frac{L_{\mathrm{f}}}{\rho} \bar{\delta}+\bar{\lambda}\right) \underset{\bar{\delta}, \bar{\lambda} \rightarrow 0}{\longrightarrow} 0
$$

Second step of approximation $\mathcal{G}^{\text {na }}(\mathcal{A}) \rightarrow \mathcal{G}^{\mathcal{I}}(\mathcal{A})$

Theorem (Jacquot, Wan, Beaude, and Oudjane, 2018)

Under A1, consider an approximating game $\mathcal{G}^{\mathcal{I}}(\mathcal{A})$ with $\bar{\delta}$ small enough. Let x be a SVWE of $\mathcal{G}^{\mathcal{I}}(\mathcal{A})$, and x^{*} a SVWE of $\mathcal{G}^{\text {na }}(\mathcal{A})$. Then:
(1) if $\forall n, u_{n}$ is α-strongly concave $(\alpha>0)$, then $\boldsymbol{x} \in \mathbb{R}^{T p}$ and $\boldsymbol{x}^{*} \in \mathbb{R}^{T N}$ are unique and

$$
\begin{aligned}
& \left\|\psi_{\mathcal{I} \rightarrow \mathcal{N}}(\boldsymbol{x})-\boldsymbol{x}^{*}\right\| \leq \sqrt{N \frac{\operatorname{err}(\bar{\delta}, \bar{\lambda})}{\alpha}} \text { where } \operatorname{err}(\bar{\delta}, \bar{\lambda}) \stackrel{\text { def }}{=} 2 T M\left(3 \frac{\left.L_{\mathrm{f}} \bar{\delta}+\bar{\lambda}\right)}{\bar{\delta}, \bar{\lambda} \rightarrow 0} \longrightarrow 0\right. \\
& \frac{1}{N} \sum_{i} \sum_{n \in \mathcal{N}_{i}}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{n}^{*}\right\| \leq \sqrt{\frac{\operatorname{err}(\bar{\delta}, \bar{\lambda})}{\alpha}} \text { and }\left\|\overline{\boldsymbol{X}}-\overline{\boldsymbol{X}}^{*}\right\| \leq \sqrt{\frac{\operatorname{err}(\bar{\delta}, \bar{\lambda})}{\alpha}}
\end{aligned}
$$

Second step of approximation $\mathcal{G}^{\text {na }}(\mathcal{A}) \rightarrow \mathcal{G}^{\mathcal{I}}(\mathcal{A})$

Theorem (Jacquot, Wan, Beaude, and Oudjane, 2018)

Under A1, consider an approximating game $\mathcal{G}^{\mathcal{I}}(\mathcal{A})$ with $\bar{\delta}$ small enough. Let x be a SVWE of $\mathcal{G}^{\mathcal{I}}(\mathcal{A})$, and x^{*} a SVWE of $\mathcal{G}^{\text {na }}(\mathcal{A})$. Then:
(1) if $\forall n, u_{n}$ is α-strongly concave $(\alpha>0)$, then $\boldsymbol{x} \in \mathbb{R}^{T p}$ and $\boldsymbol{x}^{*} \in \mathbb{R}^{T N}$ are unique and

$$
\begin{aligned}
& \left\|\psi_{I \rightarrow N}(\boldsymbol{x})-\boldsymbol{x}^{*}\right\| \leq \sqrt{N \frac{\operatorname{err}(\bar{\delta}, \bar{\lambda})}{\alpha}} \text { where } \operatorname{err}(\bar{\delta}, \bar{\lambda}) \stackrel{\text { def }}{=} 2 T M\left(3 \frac{\operatorname{Lif}_{\rho}^{\rho}}{\rho}+\bar{\lambda}\right) \underset{\bar{\delta}, \bar{\lambda} \rightarrow 0}{\longrightarrow} 0 \\
& \frac{1}{N} \sum_{i} \sum_{n \in \mathcal{N}_{i}}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{n}^{*}\right\| \leq \sqrt{\frac{\operatorname{err}(\bar{\delta}, \bar{\lambda})}{\alpha}} \text { and }\left\|\overline{\boldsymbol{X}}-\overline{\boldsymbol{X}}^{*}\right\| \leq \sqrt{\frac{\operatorname{err}(\bar{\delta}, \bar{\lambda})}{\alpha}} ;
\end{aligned}
$$

(2) if $\left(c_{t}\right)_{t \in \mathcal{T}}$ is β-strongly monotone $(\beta>0)$ then $\overline{\boldsymbol{X}}$ and $\overline{\boldsymbol{X}}^{*}$ are unique, and:

$$
\left\|\overline{\boldsymbol{X}}-\overline{\boldsymbol{X}}^{*}\right\| \leq \sqrt{\frac{\operatorname{err}(\bar{\delta}, \bar{\lambda})}{\beta}} .
$$

Application to DR and EV smart charging

- $\mathcal{T}=\{1, \ldots, T\}, T=24$: from 10 PM to 9 PM the day after
- electricity prices on each $t \in \mathcal{T}: c_{t} \equiv c$: inclining block-rates (IBR) tariffs: pcw affine and convex functions:

$$
c(\bar{X})= \begin{cases}1+200 \bar{X} & \text { if } \bar{X} \leq 0.25, \\ -49+400 \bar{X} & \text { if } 0.25 \leq \bar{X} \leq 0.25, \\ -349+1000 \bar{X} & \text { if } 0.5 \leq \bar{X} .\end{cases}
$$

Application to DR and EV smart charging

- $\mathcal{T}=\{1, \ldots, T\}, T=24$: from 10 PM to 9 PM the day after
- electricity prices on each $t \in \mathcal{T}: c_{t} \equiv c$: inclining block-rates (IBR) tariffs: pcw affine and convex functions:

$$
c(\bar{X})= \begin{cases}1+200 \bar{X} & \text { if } \bar{X} \leq 0.25, \\ -49+400 \bar{X} & \text { if } 0.25 \leq \bar{X} \leq 0.25, \\ -349+1000 \bar{X} & \text { if } 0.5 \leq \bar{X} .\end{cases}
$$

- $N=2000$ consumers
- demand constraints: $\mathcal{X}_{n}=\left\{\boldsymbol{x}_{n} \in \mathbb{R}_{+}^{T}: \sum_{t} x_{n t}=E_{n}\right.$ and $\left.\underline{x}_{n t} \leq x_{n t} \leq \bar{x}_{n t}\right\}$ where E_{n} : total energy needed by n and $\underline{x}_{n t}, \bar{x}_{n t}$ are (physical) power bounds ;
- utility functions

$$
u_{n}\left(\boldsymbol{x}_{n}\right)=-\omega_{n}\left\|\boldsymbol{x}_{n}-\boldsymbol{y}_{n}\right\|^{2}
$$

Application to DR and EV smart charging

- $\mathcal{T}=\{1, \ldots, T\}, T=24$: from 10 PM to 9 PM the day after
- electricity prices on each $t \in \mathcal{T}: c_{t} \equiv c$: inclining block-rates (IBR) tariffs: pcw affine and convex functions:

$$
c(\bar{X})= \begin{cases}1+200 \bar{X} & \text { if } \bar{X} \leq 0.25, \\ -49+400 \bar{X} & \text { if } 0.25 \leq \bar{X} \leq 0.25, \\ -349+1000 \bar{X} & \text { if } 0.5 \leq \bar{X} .\end{cases}
$$

- $N=2000$ consumers
- demand constraints: $\mathcal{X}_{n}=\left\{\boldsymbol{x}_{n} \in \mathbb{R}_{+}^{T}: \sum_{t} x_{n t}=E_{n}\right.$ and $\left.\underline{x}_{n t} \leq x_{n t} \leq \bar{x}_{n t}\right\}$ where E_{n} : total energy needed by n and $\underline{x}_{n t}, \bar{x}_{n t}$ are (physical) power bounds ;
- utility functions

$$
u_{n}\left(\boldsymbol{x}_{n}\right)=-\omega_{n}\left\|\boldsymbol{x}_{n}-\boldsymbol{y}_{n}\right\|^{2} .
$$

- Coupling constraints on average demand $\overline{\boldsymbol{X}}$:

$$
\begin{aligned}
& \bar{X}_{t} \leq 0.7, \quad \forall t \\
& -0.025 \leq \bar{X}_{T}-\bar{X}_{1} \leq 0.025
\end{aligned}
$$

- simul number of clusters $p \in\{5,10,20,50,100\}$ use k-means algo.

- simul number of clusters $p \in\{5,10,20,50,100\}$ use k-means algo.

Relative error to actual VNE

Convergence of the agg. SVWE profile to agg. VNE

- simul number of clusters $p \in\{5,10,20,50,100\}$ use k-means algo.

Relative error to actual VNE

Convergence of the agg. SVWE profile to agg. VNE

Time to compute SVWE.

- Time to compute a VNE of $\mathcal{G}(\mathcal{A})$ with the same stopping criterion: 3 h 26 " \rightarrow six times longer than the CPU time to compute the SVWE with $p=100$.

Conclusion

Various contributions on Distributed Optimization and Game Theory for Decentralized Electric Systems and Demand Response:
 - models analysis, theoretical and numerical results:

Various contributions on Distributed Optimization and Game Theory for Decentralized Electric Systems and Demand Response:

- models analysis, theoretical and numerical results:
- evaluate efficiency and better understand potential benefits and issues of flexibilities and DR

Various contributions on Distributed Optimization and Game Theory for Decentralized Electric Systems and Demand Response:

- models analysis, theoretical and numerical results:
- evaluate efficiency and better understand potential benefits and issues of flexibilities and DR
- algorithmic results

Various contributions on Distributed Optimization and Game Theory for Decentralized Electric Systems and Demand Response:

- models analysis, theoretical and numerical results:
- evaluate efficiency and better understand potential benefits and issues of flexibilities and DR
- algorithmic results
- operational algorithmic methods to use for decentralized systems

Various contributions on Distributed Optimization and Game Theory for Decentralized Electric Systems and Demand Response:

- models analysis, theoretical and numerical results:
- evaluate efficiency and better understand potential benefits and issues of flexibilities and DR
- algorithmic results
- operational algorithmic methods to use for decentralized systems
- other applications of the results in transports, telecoms, internet, logistics.

Various contributions on Distributed Optimization and Game Theory for Decentralized Electric Systems and Demand Response:

- models analysis, theoretical and numerical results:
- evaluate efficiency and better understand potential benefits and issues of flexibilities and DR
- algorithmic results
- operational algorithmic methods to use for decentralized systems
- other applications of the results in transports, telecoms, internet, logistics.
(Some) Open theoretical questions:

Various contributions on Distributed Optimization and Game Theory for Decentralized Electric Systems and Demand Response:

- models analysis, theoretical and numerical results:
- evaluate efficiency and better understand potential benefits and issues of flexibilities and DR
- algorithmic results
- operational algorithmic methods to use for decentralized systems
- other applications of the results in transports, telecoms, internet, logistics.

(Some) Open theoretical questions:

- convergence bounds on disaggregation algo (number of cuts);

Various contributions on Distributed Optimization and Game Theory for Decentralized Electric Systems and Demand Response:

- models analysis, theoretical and numerical results:
- evaluate efficiency and better understand potential benefits and issues of flexibilities and DR
- algorithmic results
- operational algorithmic methods to use for decentralized systems
- other applications of the results in transports, telecoms, internet, logistics.

(Some) Open theoretical questions:

- convergence bounds on disaggregation algo (number of cuts);
- convergence of BR in the monotone case (extending potential case);

Various contributions on Distributed Optimization and Game Theory for Decentralized Electric Systems and Demand Response:

- models analysis, theoretical and numerical results:
- evaluate efficiency and better understand potential benefits and issues of flexibilities and DR
- algorithmic results
- operational algorithmic methods to use for decentralized systems
- other applications of the results in transports, telecoms, internet, logistics.

(Some) Open theoretical questions:

- convergence bounds on disaggregation algo (number of cuts);
- convergence of BR in the monotone case (extending potential case);
- algo aspects of the computation of monotone GVI (chapter 6).

Various contributions on Distributed Optimization and Game Theory for Decentralized Electric Systems and Demand Response:

- models analysis, theoretical and numerical results:
- evaluate efficiency and better understand potential benefits and issues of flexibilities and DR
- algorithmic results
- operational algorithmic methods to use for decentralized systems
- other applications of the results in transports, telecoms, internet, logistics.

(Some) Open theoretical questions:

- convergence bounds on disaggregation algo (number of cuts);
- convergence of BR in the monotone case (extending potential case);
- algo aspects of the computation of monotone GVI (chapter 6).

Prospective questions:

Various contributions on Distributed Optimization and Game Theory for Decentralized Electric Systems and Demand Response:

- models analysis, theoretical and numerical results:
- evaluate efficiency and better understand potential benefits and issues of flexibilities and DR
- algorithmic results
- operational algorithmic methods to use for decentralized systems
- other applications of the results in transports, telecoms, internet, logistics.

(Some) Open theoretical questions:

- convergence bounds on disaggregation algo (number of cuts);
- convergence of BR in the monotone case (extending potential case);
- algo aspects of the computation of monotone GVI (chapter 6).

Prospective questions:

- bilevel/Stackelberg models,

Various contributions on Distributed Optimization and Game Theory for Decentralized Electric Systems and Demand Response:

- models analysis, theoretical and numerical results:
- evaluate efficiency and better understand potential benefits and issues of flexibilities and DR
- algorithmic results
- operational algorithmic methods to use for decentralized systems
- other applications of the results in transports, telecoms, internet, logistics.

(Some) Open theoretical questions:

- convergence bounds on disaggregation algo (number of cuts);
- convergence of BR in the monotone case (extending potential case);
- algo aspects of the computation of monotone GVI (chapter 6).

Prospective questions:

- bilevel/Stackelberg models,
- dynamic, repeated games and MFG,

Various contributions on Distributed Optimization and Game Theory for Decentralized Electric Systems and Demand Response:

- models analysis, theoretical and numerical results:
- evaluate efficiency and better understand potential benefits and issues of flexibilities and DR
- algorithmic results
- operational algorithmic methods to use for decentralized systems
- other applications of the results in transports, telecoms, internet, logistics.

(Some) Open theoretical questions:

- convergence bounds on disaggregation algo (number of cuts);
- convergence of BR in the monotone case (extending potential case);
- algo aspects of the computation of monotone GVI (chapter 6).

Prospective questions:

- bilevel/Stackelberg models,
- dynamic, repeated games and MFG,
- electrical network modeling.

Decentralized Management of Flexibilities and Optimization

Jacquot, P., Beaude, O., Benchimol, P., Gaubert, S., and Oudjane, N. (2019a). "A Privacy-preserving Disaggregation Algorithm for Non-intrusive Management of Flexible Energy". In: IEEE 58th Conference on Decision and Control (CDC). IEEE.
Jacquot, P., Beaude, O., Benchimol, P., Gaubert, S., and Oudjane, N. (2019b). "A Privacy-preserving Method to optimize distributed resource allocation". In: arXiv preprint.
Jacquot, P., Oudjane, N., Beaude, O., Benchimol, P., and Gaubert, S. (2018). "Procédé de gestion décentralisée de consommation électrique non-intrusif". French Patent FR1872553. EDF and Inria. filed to INPI on 7 Dec. 2018.

Decentralized Management of Flexibilities and Game Theory

7- Jacquot, P., Beaude, O., Gaubert, S., and Oudjane, N. (2017a). "Demand Response in the Smart Grid: the Impact of Consumers Temporal Preferences". In: IEEE International Conference on Smart Grid Communications (SmartGridComm). IEEE.
Jacquot, P., Beaude, O., Gaubert, S., and Oudjane, N. (2017b). "Demand Side Management in the Smart Grid: an Efficiency and Fairness Tradeoff". In: IEEE/PES 8thInnovative Smart Grid Technologies Europe (ISGT). IEEE.
E Jacquot, P., Beaude, O., Gaubert, S., and Oudjane, N. (2019). "Analysis and Implementation of an Hourly Billing Mechanism for Demand Response Management". In: IEEE Transactions on Smart Grid 10.4, pp. 4265-4278. ISSN: 1949-3053.

Efficient Estimation of Equilibria in Large Games

Jacquot, P. and Wan, C. (2018). "Routing Game on Parallel Networks: the Convergence of Atomic to Nonatomic". In: IEEE 57th Conference on Decision and Control (CDC).
嗇 Jacquot, P. and Wan, C. (2019). "Nonatomic Aggregative Games with Infinitely Many Types". In: arXiv preprint.

- Jacquot, P., Wan, C., Beaude, O., and Oudjane, N. (2018). "Efficient Estimation of Equilibria of Large Congestion Games with Heterogeneous Players". In: arXiv preprint.

Decentralized Energy Exchanges in a Peer to Peer Framework

Le Cadre, H., Jacquot, P., Wan, C., and Alasseur, C. (2019). "Peer-to-Peer Electricity Market Analysis: From Variational to Generalized Nash Equilibrium". In: European Journal of Operational Research.

Thanks to:

Stéphane Gaubert

NADIA
Oudjane

Olivier
Beaude

Cheng Wan

Clémence Alasseur

HÉLÈNE
Le Cadre

Pascal
Benchimol

Thanks to:

Issues: transmission of profiles for projection: SMC

In APM, agents still have to provide profiles $\left(x_{n}^{(k)}\right)_{n}$
\rightarrow Secure Multiparty Computation (SMC) principle
Require: Each agent has a profile $\left(\boldsymbol{x}_{n}\right)_{n \in \mathcal{N}}$
1: for each agent $n \in \mathcal{N}$ do
2: \quad Draw $\forall t,\left(s_{n, t, m}\right)_{m=1}^{N-1} \in \mathcal{U}\left([0, A]^{N-1}\right)$
3: and set $\forall t, s_{n, t, N} \stackrel{\text { def }}{=} x_{n, t}-\sum_{m=1}^{N-1} s_{n, t, m}$
4: \quad Send $\left(s_{n, t, m}\right)_{t \in \mathcal{T}}$ to agent $m \in \mathcal{N}$
done
for each agent $n \in \mathcal{N}$ do
Compute $\forall t, \sigma_{n, t}=\sum_{m \in \mathcal{N}} S_{m, t, n}$
Send $\left(\sigma_{n, t}\right)_{t \in \mathcal{T}}$ to operator
done
10: Operator computes $S=\sum_{n \in \mathcal{N}} \boldsymbol{\sigma}_{n}$

Issues: transmission of profiles for projection: SMC

In APM, agents still have to provide profiles $\left(x_{n}^{(k)}\right)_{n}$
\rightarrow Secure Multiparty Computation (SMC) principle
Require: Each agent has a profile $\left(\boldsymbol{x}_{n}\right)_{n \in \mathcal{N}}$
1: for each agent $n \in \mathcal{N}$ do
2: \quad Draw $\forall t,\left(s_{n, t, m}\right)_{m=1}^{N-1} \in \mathcal{U}\left([0, A]^{N-1}\right)$
3: and set $\forall t, s_{n, t, N} \stackrel{\text { def }}{=} x_{n, t}-\sum_{m=1}^{N-1} s_{n, t, m}$ Send $\left(s_{n, t, m}\right)_{t \in \mathcal{T}}$ to agent $m \in \mathcal{N}$
done

$$
\begin{aligned}
& x_{1}=s_{1,1}+s_{1,2}+s_{1,3} \\
& x_{2}=s_{2,1}+s_{2,2}+s_{2,3} \\
& x_{3}=s_{3,1}+s_{3,2}+s_{3,3}
\end{aligned}
$$

Compute $\forall t, \sigma_{n, t}=\sum_{m \in \mathcal{N}} S_{m, t, n}$ Send $\left(\sigma_{n, t}\right)_{t \in \mathcal{T}}$ to operator
done
10: Operator computes $S=\sum_{n \in \mathcal{N}} \boldsymbol{\sigma}_{n}$

Issues: transmission of profiles for projection: SMC

In APM, agents still have to provide profiles $\left(x_{n}^{(k)}\right)_{n}$
\rightarrow Secure Multiparty Computation (SMC) principle
Require: Each agent has a profile $\left(\boldsymbol{x}_{n}\right)_{n \in \mathcal{N}}$
1: for each agent $n \in \mathcal{N}$ do
2: \quad Draw $\forall t,\left(s_{n, t, m}\right)_{m=1}^{N-1} \in \mathcal{U}\left([0, A]^{N-1}\right)$
3: and set $\forall t, s_{n, t, N} \stackrel{\text { def }}{=} x_{n, t}-\sum_{m=1}^{N-1} s_{n, t, m}$

$$
\text { Send }\left(s_{n, t, m}\right)_{t \in \mathcal{T}} \text { to agent } m \in \mathcal{N}
$$

$$
\begin{aligned}
& x_{1}=s_{1,1}+s_{1,2}+s_{1,3} \\
& x_{2}=s_{2,1}+s_{2,2}+s_{2,3} \\
& x_{3}=s_{3,1}+s_{3,2}+s_{3,3} \\
& \sum_{n} x_{n}=\sigma_{1}+\sigma_{2}+\sigma_{3}
\end{aligned}
$$

done
for each agent $n \in \mathcal{N}$ do
Compute $\forall t, \sigma_{n, t}=\sum_{m \in \mathcal{N}} s_{m, t, n}$
8: \quad Compute $\left(\sigma_{n, t}\right)_{t \in \mathcal{T}}$ to operator
9: done
10: Operator computes $\boldsymbol{S}=\sum_{n \in \mathcal{N}} \boldsymbol{\sigma}_{n}$

Extension of NE estimation in unsplittable case

- VI characterization of NE in atomic unsplittable case ?

Game with resources $\mathcal{T}=\{1, \ldots, T\}$ and $\forall n, \mathcal{X}_{n}=\left\{e_{1}, \ldots,, e_{K_{n}}\right\} \subset 2^{\mathcal{T}}$,

$$
\forall n, \forall e_{n}=\left(e_{n, t}\right)_{t \in \mathcal{T}} \in \mathcal{X}_{n}, f_{n}\left(e_{n}, e_{-n}\right)=\sum_{t \in e_{n}} c_{t}(e)=\sum_{t \in e_{n}} c_{t}\left(\sum_{m: t \in e_{m}} 1\right)
$$

- consider mixed strategies $x_{n} \in \triangle_{\mathcal{X}_{n}}$:
\hat{x} is a mixed NE iff

$$
\langle G V(\hat{x}), x-\hat{x}\rangle \geq 0, \forall x \in \mathcal{X}
$$

where $G V(\boldsymbol{x})=\left(G V_{n}\left(\boldsymbol{x}_{-n}\right)\right)_{n^{\prime}}$, with $G V_{n}\left(x_{-n}\right)$ the multilinear extension of f_{n} :

$$
\left[G V_{n}\left(x_{-n}\right)\right]_{e_{n}} \frac{\text { def }}{=} \sum_{e_{1} \in \mathcal{X}_{1}} \ldots \sum_{e_{N} \in \mathcal{X}_{n}} x_{e_{1}} \ldots x_{e_{n-1}} x_{e_{n+1}} \ldots x_{e_{N}} f_{n}\left(e_{1}, \ldots, e_{n-1}, e_{n}, e_{n+1}, \ldots, e_{N}\right)
$$

- Coupling constraint - Which signification with mixed strategies ??

Wardrop formulation: flow vs cost functions

- consider nonatomic aggregative game $\left(\Theta,\left(f_{\theta}\right)_{\theta},\left(\mathcal{X}_{\theta}\right)_{\theta}\right)$

WE: \boldsymbol{x}^{*} s.t. \forall a.e. $\theta, \quad \forall \boldsymbol{x}_{\theta} \in \mathcal{X}_{\theta}, \quad f_{\theta}\left(\boldsymbol{x}_{\theta}^{*}, \boldsymbol{X}^{*}\right) \leq f_{\theta}\left(\boldsymbol{x}_{\theta}, \boldsymbol{X}^{*}\right)$
congestion case: if $\mathcal{X}_{\theta}=\left\{\boldsymbol{x}_{\theta} \in \triangle_{T-1}\right\} \subset \mathbb{R}^{T}$ and $f_{\theta}\left(\boldsymbol{x}_{\theta}, \boldsymbol{X}\right)=\sum_{t} x_{\theta, t} c_{t}\left(X_{t}\right)$ then:

$$
\boldsymbol{x}^{*} \text { is a WE iff } x_{\theta, t}>0 \Rightarrow c_{t}\left(X_{t}\right) \leq c_{s}\left(X_{s}\right) \forall s \in \mathcal{T}
$$

but in a arbitrary aggretative game, $\left(\boldsymbol{x}_{\theta}, \boldsymbol{X}\right) \mapsto f_{\theta}\left(\boldsymbol{x}_{\theta}, \boldsymbol{X}\right)$ is not linear in \boldsymbol{x}_{θ}

- optimality conditions will depend on the player's actions \boldsymbol{x}_{θ} and not only on flow \boldsymbol{X}.
- consider linear agg. games to keep flow formulation ?

KALAI: semi-anonymous games

Bayesian games: payoff $\mu_{i}\left(c_{i}, c_{-i}\right)$ depends on the distribution of players that choose $c_{-i}=k$

- similarity to our model \rightarrow dependency of costs on the average term $\left(\overline{\boldsymbol{X}}_{t}\right)_{t}$

