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Model of Autonomous Network

Optimization on a finite time lapse

Set of discrete time periods T
→ for each time, production cost Ct(`t)
( increasing and convex function of total load).

One distributor/aggregator d
provides a set N of N
residential consumers

Consumers send their desired
consumption profiles (`tn)t ,

Aggregator broadcast costs and
aggregated load (`t)t ,

Consumers eventually reach an
equilibrium.
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The essential ingredients

In the DR program, we should ask for:

1 Efficiency: Resulting load profile should minimize global costs,

Paulin J. (EDF - Inria) Demand Response and Dynamic Pricing June 29, 2017 4 / 17



The essential ingredients

In the DR program, we should ask for:

1 Efficiency: Resulting load profile should minimize global costs,

Paulin J. (EDF - Inria) Demand Response and Dynamic Pricing June 29, 2017 4 / 17



Electricity Consumption Game: the model

min
`n∈RT

bn(`n, `−n) (1a)

s.t.

∑
t∈T

`tn = En, (1b)

`tn ≤ `tn ≤ `
t
n,∀t ∈ T .

(1c)

where bn is the dynamic price for user n (bill), taken as:

Definition (Daily Prop.)

bDP
n (`) =

En∑
m Em

∑
t∈T

Ct(`
t)

Definition (Hourly Prop. )

bHP
n (`) =

∑
t∈T

`tn
`t
Ct(`

t)

→ N-person minimization game G :=
(
N ,L, (bn)n

)
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Measuring Efficiency: the Price of Anarchy

Nash Equilibrium (NE)
(`n)n is a NE IFF for all n:

∀`′n ∈ Ln, bn(`n, `−n) ≤ bn(`′n, `−n)

Social Optimum (SO)
(`∗n)n is a SO IFF :

(`∗n)n = argmin
`∈L

∑
n

bn(`)

Definition (Price of Anarchy)

PoA(G) :=
sup`∈XNE

G
SC (`)

SC(`∗)
,

where SC(.) =
∑

n bn(.) is the social cost.
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Bounding the PoA

with Daily billing bDP
n , every user minimizes En

E

∑
t∈T Ct(`

t)
(see Mohsenian-Rad et al., 2010)

⇒ PoA = 1

with Hourly billing bHP
n , the equilibrium is not optimal!

Theorem (J. et al., 2017)

Assume costs are quadratic:

Ct(`) = at1`+ at2`
2 ,

Then the PoA is upper bounded:

PoA ≤ 1 +
3

4
sup
h∈H

1

1 + ah1/(ah2`
h
)
.
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The essential ingredients

In the DR program, we should ask for:

1 Efficiency: Resulting load profile should minimize global costs,

2 Fairness: Prices and bills sould be fair and attractive to users,
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Fair’s fair

Externality brought by n:

Vn := C∗N − C∗N\{n}
Which would be equilibrium payments of the billing system:

bvcgn (xn, x−n) :=
∑
h∈H

Ch

(∑
m∈N

`hm

)
− C∗N\{n}

Definition (Baharlouei and Hashemi, 2014)

The fairness index of a billing mechanism (bn)n is its maximal normalized
distance to (Vn)n at a Nash Equilibrium:

F := sup
x∈XNE

G

[∑
n∈N

∣∣∣∣ Vn∑
m∈N Vm

− bn (x)∑
m∈N bm (x)

∣∣∣∣
]
. (2)

→ Relation to Shapley Value
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Cost of constraints

Definition (Daily Prop.)

bDP
n (`) =

En∑
m Em

∑
t∈T

Ct(`
t)

Definition (Hourly Prop. )

bHP
n (`) =

∑
t∈T

`tn
`t
Ct(`

t)
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Efficiency Versus Fairness

Simulation: 30 days, 30 users EV owners (Data Pecan Street Inc.)

Paulin J. (EDF - Inria) Demand Response and Dynamic Pricing June 29, 2017 11 / 17



The essential ingredients

In the DR program, we should ask for:

1 Efficiency: Resulting load profile should minimize global costs,

2 Fairness: Prices and bills sould be fair and attractive to users,

3 Robustness: Incentives should be sufficient to influence consumers.

Paulin J. (EDF - Inria) Demand Response and Dynamic Pricing June 29, 2017 12 / 17



The essential ingredients

In the DR program, we should ask for:

1 Efficiency: Resulting load profile should minimize global costs,

2 Fairness: Prices and bills sould be fair and attractive to users,

3 Robustness: Incentives should be sufficient to influence consumers.

Paulin J. (EDF - Inria) Demand Response and Dynamic Pricing June 29, 2017 12 / 17



User’s preferences

Consumers might have a prefered consumption profile (ˆ̀t
n)t

→ distance to this profile will be penalized.

Assume user’s objective is modified as:

f αn (`n, `−n) = (1− α)bn(`) + α
∥∥∥`− ˆ̀

∥∥∥2

2

with α ∈ [0, 1] the preference factor.

What is the impact on the equilibrium profile and global system costs ?
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Understanding a toy model

Assume: T = {P,O}, N users,

Ct(`
t) = (`t)2, `tn ≥ 0 .

Proposition (Jacquot et al., 2017)

Assume ∀n ∈ N ,
ˆ̀P
n
En

+ 1
2 ≥

ˆ̀P

E , then, for α ∈ (0, 1], the NE of GDP
α gives:

∀h ∈ {P,O}, `h = E/2 + α× (ˆ̀̄h − ˆ̀̄h)/2 . (3)

Proposition (Jacquot et al., 2017)

Assume ∀n ∈ N , ˆ̀P
n ≥

(ˆ̀P−ˆ̀O)−En

2(N−1) , then ∀α ∈ [0, 1], the NE of GHPα gives:

∀h ∈ {P,O}, `h = E/2 + φ(α)× (ˆ̀h − ˆ̀̄h)/2 . (4)

where φ(α)
def
= 2α

(1+α)+(1−α)N ∈ [0, 1].
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Impact on the System Costs and the Price of Anarchy

System costs:

C(`) =
∑
t

Ct(`
t),

PoE =
sup`∈XNE

G
C (`)

C∗
.

Social Cost:
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f αn (`)

PoA =
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Evolution of PoA-1 with α.

Paulin J. (EDF - Inria) Demand Response and Dynamic Pricing June 29, 2017 15 / 17



Impact on the System Costs and the Price of Anarchy

System costs:

C(`) =
∑
t

Ct(`
t),

PoE =
sup`∈XNE

G
C (`)

C∗
.

Social Cost:

SC(`) =
∑
n

f αn (`)

PoA =
sup`∈XNE

G
SC (`)

SC∗
.

Evolution of PoA-1 with α.

Paulin J. (EDF - Inria) Demand Response and Dynamic Pricing June 29, 2017 15 / 17



Impact on the System Costs and the Price of Anarchy

System costs:

C(`) =
∑
t

Ct(`
t),

PoE =
sup`∈XNE

G
C (`)

C∗
.

Social Cost:

SC(`) =
∑
n

f αn (`)

PoA =
sup`∈XNE

G
SC (`)

SC∗
.

Evolution of PoE-1 with α.

Evolution of PoA-1 with α.

Paulin J. (EDF - Inria) Demand Response and Dynamic Pricing June 29, 2017 15 / 17



Impact on the System Costs and the Price of Anarchy

System costs:

C(`) =
∑
t

Ct(`
t),

PoE =
sup`∈XNE

G
C (`)

C∗
.

Social Cost:

SC(`) =
∑
n

f αn (`)

PoA =
sup`∈XNE

G
SC (`)

SC∗
.

Evolution of PoA-1 with α.

Paulin J. (EDF - Inria) Demand Response and Dynamic Pricing June 29, 2017 15 / 17



Impact on the System Costs and the Price of Anarchy

System costs:

C(`) =
∑
t

Ct(`
t),

PoE =
sup`∈XNE

G
C (`)

C∗
.

Social Cost:

SC(`) =
∑
n

f αn (`)

PoA =
sup`∈XNE

G
SC (`)

SC∗
.

Evolution of PoA-1 with α.

Paulin J. (EDF - Inria) Demand Response and Dynamic Pricing June 29, 2017 15 / 17



Impact on the System Costs and the Price of Anarchy

System costs:

C(`) =
∑
t

Ct(`
t),

PoE =
sup`∈XNE

G
C (`)

C∗
.

Social Cost:

SC(`) =
∑
n

f αn (`)

PoA =
sup`∈XNE

G
SC (`)

SC∗
.

Evolution of PoA-1 with α.

Paulin J. (EDF - Inria) Demand Response and Dynamic Pricing June 29, 2017 15 / 17



Conclusion and Perspectives

Focus on three aspects of a Demand Response program

In practice, several issues:

Coordination Signal/ Energy Consumption Scheduler (ECS) or
Dynamic Pricing

→ which payoff for consumers ?

Online / Offline version (Day-Ahead)

→ Robustness against unplanned customers events (stochasticity) ,
→ Fast Convergence and Computation of the equilibrium

Large Scale Forecasting

Non atomic (population) game model,

THANK YOU!
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