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Model of Autonomous Network

@ Optimization on a finite time lapse

@ Set of discrete time periods T
— for each time, production cost C;(/;)
(increasing and convex function of total load).

@ One distributor/aggregator d
provides a set A/ of N
residential consumers

@ Consumers send their desired
consumption profiles (¢%);,

@ Aggregator broadcast costs and
aggregated load (¢);,

@ Consumers eventually reach an
equilibrium.
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where by, is the dynamic price for user n (bill), taken as:

Definition (Daily Prop.)

Definition (Hourly Prop. )

bDP Z Z Ct gt bHP Z Et Ct et

m et teT

— N-person minimization game G := (N, L, (by)n)
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Measuring Efficiency: the Price of Anarchy

Nasu EqQuiLiBRIUM (NE)
(€n)n is a NE IFF for all n:

Ve, € Ly, by(bn,—pn) < by(£),20-1)
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(€,)n is a NE IFF for all n: (€x), is a SO IFF:

(€;)n = argmin Y by(4)
Ve € Ly, bp(€n,€_1) < ba(£,£_1) eL ;

Definition (Price of Anarchy)

Supge yne SC(£)
POA(G) := % :

where SC(.) = >, ba(.) is the social cost.
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Bounding the PoA

o with Daily billing b2®, every user minimizes £ 3~, - C(¢%)
(see Mohsenian-Rad et al., 2010)
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o with Daily billing b2®, every user minimizes £25c(¢)
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= PoA=1

e with Hourly billing bHP, the equilibrium is not optimal!

Theorem (J. et al., 2017)

Assume costs are quadratic:
Ce(£) = all + abe? |

Then the PoA is upper bounded:

3 1
PoA<1+ —sup —————.
her 1+ af /(agl")
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= PoA=1

e with Hourly billing bHP, the equilibrium is not optimal!

Theorem (J et aI, 2017) 15 Evolution of POA with r ratio
— POA tests
Assume costs are quadratic: 1]
Ci(0) = atl + abe? | |
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Then the PoA is upper bounded: —~
11 —
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Externality brought by n:

Vn = Cj{/’ — Cj\/’\{n}
Which would be equilibrium payments of the billing system:

by (xn,x_n) =Y _ Cp (Z ¢h ) — Cr )

heH meN
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Vn = Cj{/’ — Cj\/’\{n}
Which would be equilibrium payments of the billing system:

by (xn,x_n) 1= > _ Gy (Z ¢h ) — Cr )

heH meN

Definition (Baharlouei and Hashemi, 2014)

The fairness index of a billing mechanism (b,), is its maximal normalized
distance to (V). at a Nash Equilibrium:

. b
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Definition (Baharlouei and Hashemi, 2014)

The fairness index of a billing mechanism (b,), is its maximal normalized
distance to (V). at a Nash Equilibrium:

. b
= xeXS‘E ,,EZN ‘ Yimen Vim  2imen bm (%) ] ‘ &

v

— Relation to Shapley Value
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Cost of constraints

Definition (Daily Prop.)

Definition (Hourly Prop. )
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Efficiency Versus Fairness

Simulation: 30 days, 30 users EV owners (Data Pecan Street Inc.)
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The essential ingredients

In the DR program, we should ask for:

@ Efficiency: Resulting load profile should minimize global costs,
@ Fairness: Prices and bills sould be fair and attractive to users,

© Robustness: Incentives should be sufficient to influence consumers.
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User's preferences

Consumers might have a prefered consumption profile (/f);

— distance to this profile will be penalized.
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User's preferences

Consumers might have a prefered consumption profile (Eﬁ)t
— distance to this profile will be penalized.

Assume user’s objective is modified as:

A2
£ (bns £n) = (1 = @)bn(8) + [ € — ]

with « € [0, 1] the preference factor.

What is the impact on the equilibrium profile and global system costs ?
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v

Proposition (Jacquot et al., 2017)

Assume ¥n e N, (P > %—O_)l_)t_” , then Yo € [0, 1], the NE of G!P gives:

Vhe {P,0}, th=E/2+ ¢(a) x (" —7)/2 . (4)
def 20
where ¢(a) = m € [O, 1]
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Impact on the System Costs and the Price of Anarchy
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Impact on the System Costs and the Price of Anarchy

System costs:
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In practice, several issues:
e Coordination Signal/ Energy Consumption Scheduler (ECS) or
Dynamic Pricing
e — which payoff for consumers ?
@ Online / Offline version (Day-Ahead)

e — Robustness against unplanned customers events (stochasticity) ,
o — Fast Convergence and Computation of the equilibrium

@ Large Scale Forecasting
o Non atomic (population) game model,

THANK YOU!

Paulin J. (EDF - Inria) Demand Response and Dynamic Pricing June 29, 2017 16 / 17



References

[1] Baharlouei, Z. and Hashemi, M. (2014). Efficiency-fairness trade-off in
privacy-preserving autonomous demand side management. [EEE
Transactions on Smart Grid, 5(2):799-808.

[2] J., P., Beaude, O., Gaubert, S., and Oudjane, N. (2017). Demand side
management in the smart grid: an efficiency and fairness tradeoff

(accepted). In Innovative Smart Grid Technologies (ISGT), 2017 IEEE
PES. |IEEE.

[3] Jacquot, P., Beaude, O., Gaubert, S., and Oudjane, N. (2017).
Demand response in the smart grid: the impact of consumers temporal

preferences (submitted). In Smart Grid Communications
(SmartGridComm), 2014 IEEE International Conference on. |EEE.

[4] Mohsenian-Rad, A.-H., Wong, V. W., Jatskevich, J., Schober, R., and
Leon-Garcia, A. (2010). Autonomous demand-side management based
on game-theoretic energy consumption scheduling for the future smart
grid. IEEE transactions on Smart Grid, 1:320-331.

Paulin J. (EDF - Inria) Demand Response and Dynamic Pricing June 29, 2017 17 /17



	Introduction: Demand Response
	Efficiency
	Fairness
	Robustness

