Demand Response: Congestion in the Electricity Network

P. Jacquot 1,2 O.Beaude 1 S. Gaubert 2 N.Oudjane 1

¹EDF Lab

²Inria and CMAP, École Polytechnique

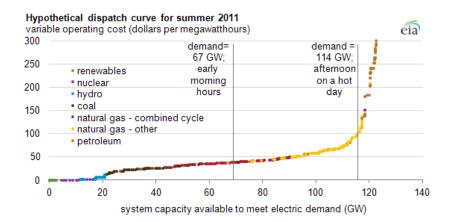
June 26, 2017

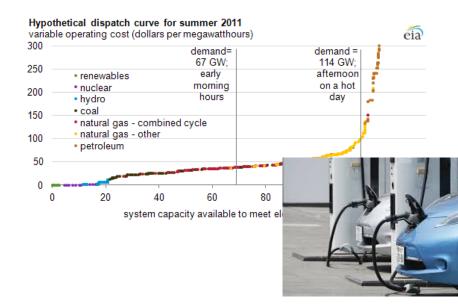
Summer School on Network Theory CIGNE, Roscoff

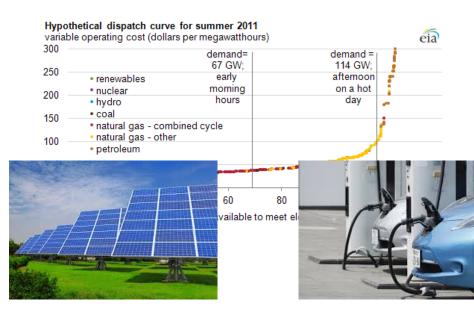
Paulin J. (EDF - Inria)

Demand Response: exploiting flexibilities

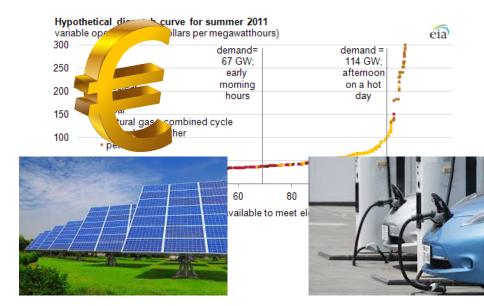
June 26, 2017 1 / 7







Introduction: Demand Response



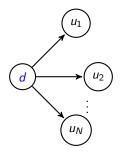
Introduction: Demand Response

Paulin J. (EDF - Inria)

Demand Response: exploiting flexibilities

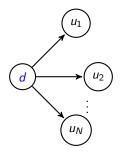
June 26, 2017 2 / 7

Set of time periods $\mathcal{T} \to \text{per-unit price } c_t(\ell_t)$ increasing and convex function of $\ell^t = \sum_{n \in \mathcal{N}} \ell_n^t$ (total load).



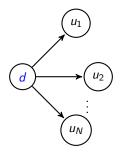
• One distributor/aggregator *d* sources from energy producers and market.

Set of time periods $\mathcal{T} \to \text{per-unit price } c_t(\ell_t)$ increasing and convex function of $\ell^t = \sum_{n \in \mathcal{N}} \ell_n^t$ (total load).



- One distributor/aggregator *d* sources from energy producers and market.
- *d* provides energy to a set \mathcal{I} of *N* residential consumers

Set of time periods $\mathcal{T} \to$ per-unit price $c_t(\ell_t)$ increasing and convex function of $\ell^t = \sum_{n \in \mathcal{N}} \ell_n^t$ (total load).



- One distributor/aggregator *d* sources from energy producers and market.
- *d* provides energy to a set *I* of *N* residential consumers
- Consumers converge to an equilibrium consumption profile.

$$\sum_{t\in\mathcal{T}}\ell_n^t = E_n,$$
 (1b)
(1c)

•

$$\sum_{t \in \mathcal{T}} \ell_n^t = E_n,$$
(1b)
$$\underline{\ell}_n^t \le \ell_n^t \le \overline{\ell}_n^t, \forall t \in \mathcal{T} .$$
(1c)

•

$$\min_{\ell_n \in \mathbb{R}^T} (1 - \alpha) b_n(\ell_n, \ell_{-n}) - \alpha u_n(\ell) \quad (1a)$$
s.t.
$$\sum_{t \in \mathcal{T}} \ell_n^t = E_n, \quad (1b)$$

$$\underline{\ell}_n^t \le \ell_n^t \le \overline{\ell}_n^t, \forall t \in \mathcal{T}. \quad (1c)$$

•

$$\min_{\boldsymbol{\ell}_n \in \mathbb{R}^T} (1 - \alpha) b_n(\boldsymbol{\ell}_n, \boldsymbol{\ell}_{-n}) - \alpha u_n(\boldsymbol{\ell}) \quad (1a)$$
s.t.
$$\sum_{t \in \mathcal{T}} \ell_n^t = E_n, \quad (1b)$$

$$\underline{\ell}_n^t \le \ell_n^t \le \overline{\ell}_n^t, \forall t \in \mathcal{T}. \quad (1c)$$

where:

• u_n is utility function of user $n \rightarrow \text{board!}$,

.

$$\min_{\ell_n \in \mathbb{R}^T} (1 - \alpha) b_n(\ell_n, \ell_{-n}) - \alpha u_n(\ell) \quad (1a)$$
s.t.
$$\sum_{t \in \mathcal{T}} \ell_n^t = E_n, \quad (1b)$$

$$\underline{\ell}_n^t \le \ell_n^t \le \overline{\ell}_n^t, \forall t \in \mathcal{T}. \quad (1c)$$

where:

- u_n is utility function of user $n \rightarrow \text{board!}$,
- b_n is the cost function (bill) of n (cost sharing rule) \rightarrow board!.

$$\min_{\ell_n \in \mathbb{R}^T} (1 - \alpha) b_n(\ell_n, \ell_{-n}) - \alpha u_n(\ell) \quad (1a)$$
s.t.
$$\sum_{t \in \mathcal{T}} \ell_n^t = E_n, \quad (1b)$$

$$\underline{\ell}_n^t \le \underline{\ell}_n^t \le \overline{\ell}_n^t, \forall t \in \mathcal{T}. \quad (1c)$$

where:

• u_n is utility function of user $n \rightarrow \text{board!}$,

• b_n is the cost function (bill) of n (cost sharing rule) \rightarrow board! . $\rightarrow \mathcal{G}_{\alpha} := (\mathcal{N}, \mathcal{L}, (f_n^{\alpha})_n)$, Equilibria ? Yes!

Assume: $T = \{P, O\}$, N users,

Assume: $\mathcal{T} = \{P, O\}$, N users, $c_t(\ell^t) = \ell^t$,

Assume: $\mathcal{T} = \{P, O\}$, N users, $c_t(\ell^t) = \ell^t$, $\ell^t_n \ge 0$.

Assume:
$$\mathcal{T} = \{P, O\}$$
, N users, $c_t(\ell^t) = \ell^t$, $\ell_n^t \ge 0$.

Proposition

Assume
$$\forall n \in \mathcal{N}, \ \frac{\hat{\ell}_n^P}{E_n} + \frac{1}{2} \ge \frac{\hat{\ell}_p^P}{E}$$
, then, for $\alpha \in (0, 1]$, the NE of $\mathcal{G}_{\alpha}^{DP}$ gives:
 $\forall h \in \{P, O\}, \ \ell^h = E/2 + \alpha \times (\hat{\ell}^{\bar{h}} - \hat{\ell}^{\bar{h}})/2$. (2)

Assume:
$$\mathcal{T} = \{P, O\}$$
, N users, $c_t(\ell^t) = \ell^t$, $\ell_n^t \ge 0$.

Proposition

Assume
$$\forall n \in \mathcal{N}$$
, $\frac{\hat{\ell}_n^P}{E_n} + \frac{1}{2} \ge \frac{\hat{\ell}^P}{E}$, then, for $\alpha \in (0, 1]$, the NE of $\mathcal{G}_{\alpha}^{DP}$ gives:

$$\forall h \in \{P, O\}, \ \ell^h = E/2 + \alpha \times (\hat{\ell}^{\bar{h}} - \hat{\ell}^{\bar{h}})/2 \ . \tag{2}$$

Proposition

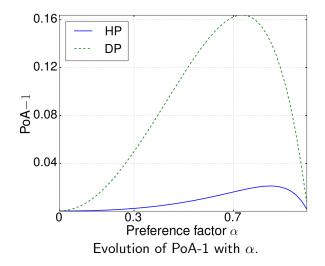
Assume
$$\forall n \in \mathcal{N}$$
, $\hat{\ell}_n^P \geq \frac{(\hat{\ell}^P - \hat{\ell}^O) - E_n}{2(N-1)}$, then $\forall \alpha \in [0, 1]$, the NE of $\mathcal{G}_{\alpha}^{HP}$ gives:

$$\forall h \in \{P, O\}, \ \ell^h = E/2 + \phi(\alpha) \times (\hat{\ell}^h - \hat{\ell}^{\bar{h}})/2 \ . \tag{3}$$

< □ > < ---->

where
$$\phi(\alpha) \stackrel{\text{def}}{=} \frac{2\alpha}{(1+\alpha)+(1-\alpha)N} \in [0,1].$$

Efficiency: Price of Anarchy



• Need fast decentralized Convergence: Fast convergence of BRD in network of parallel arcs ?

- Need fast decentralized Convergence: Fast convergence of BRD in network of parallel arcs ?
- Fairness property of prices rules to users,

- Need fast decentralized Convergence: Fast convergence of BRD in network of parallel arcs ?
- Fairness property of prices rules to users,
- Non atomic (population) game model,

- Need fast decentralized Convergence: Fast convergence of BRD in network of parallel arcs ?
- Fairness property of prices rules to users,
- Non atomic (population) game model,
- Stochastic parameters (Energy demand can change..)

- Need fast decentralized Convergence: Fast convergence of BRD in network of parallel arcs ?
- Fairness property of prices rules to users,
- Non atomic (population) game model,
- Stochastic parameters (Energy demand can change..)

THANK YOU!