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Introduction: Demand Response

Peak Hours → high system
costs: network, production,
CO2.

Customers have shiftable
appliances: electric vehicle,
water heater, washing
machine...

Shifting appliances in the best
time periods can smooth the
load profile → reduce system
costs

Smart Grids enable exchange of information → decentralized
optimization (users themselves or smart meters.)
What efficiency can be achieved here?
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Model Autonomous Network
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Modeling Users

Assume that the provider’s costs are increasing and convex
functions of total load `h at each time period h, e.g.:

Ch(`h) = ah2(`h)2 + ah1`
h + ah0, (1)

Each user n has a set of flexible items An (EV, heater,..), each
a ∈ An:

requires a fix daily energy Ena,

can be used during a subset of time periods
An = {αna, . . . , βna},
the power xhna allowed to a is bounded between xhna and xhna.

Each user pays a daily bill bn for its consumption `n = (`hn)h.
What is the good signal bn to send to users ?
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Daily proportional billing

bn ∝ En

bn = κ
En∑
m Em

∑
h Ch(`h)

System has a unique Nash Equilibrium

the NE achieves optimality (PoA=0): minimizing social cost
SC =

∑
n bn =

∑
h Ch(`h)

flexible users may not have strong incentives and pay for
others that make hours really expensive:
If n add an extra load En on a very expensive hour h, he adds

a cost Vn = Ch(`h + En)− Ch(`h) and pay for it
En∑
m Em

, the

remaining being paid by the others.
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Hourly proportional billing

bn = κ
∑

h

(
`hn∑
m `

h
m
Ch(`h)

)
= κ

∑
h

(
`hnch(lh)

)
with ch(`h) = Ch(`h)/`h the per-unit price of energy.
→ atomic congestion game.

fairer: users who charge off-peak hours will pay much less
than users who charge peak hours.
→ incentives for flexibility

Theorem

If c ′h(`h) ≥ 0 and ∀h, (`h)2∑
n(`hn)2 >

(
`hc ′′h (`h)

2c ′h(`h)

)2

then there is a unique load per user (`n)n∈N that provides a NE.

Proof on board!
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Price Of Anarchy

PoA(G) :=
supx∈XNE

G
SC (x)

SC∗
. (2)

the PoA seems small in practice → find a small theoretical bound ?

Definition (Local Smoothness, Roughgarden and Schoppmann)

A cost minimization game G = (N ,X , (bn)n) is locally
(λ, µ)-smooth with respect to y iff for all feasible outcome x :∑

n∈N
bn(x) +∇nbn(x)T (yn − xn) ≤ λSC(y) + µSC(x) .

Theorem (Roughgarden and Schoppmann)

If a game is (λ, µ)−smooth with any optimal outcome y then the
PoA of any correlated equilibrium is at most λ

1−µ .
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Using local smoothness and multiple lines of calculus, we get:

Theorem

With quad. cost functions
Ch(`h) = ah2(`h)2 + ah1`

h and

r = suph
ah1

ah2 ·l
h ,

PoA ≤ 1

2

(
1 +

√
1 +

1

(1 + r)2
+

1

2(1 + r)

)

and the upper bound is ∼
r→∞

1 + 1
4r .



Fairness

Why Fairness ?

Let SC∗M be the minimal system costs achievable with the subset of
users M.
Each user brings the external cost: Vn = SC∗N − SC∗N\{n}

We define the fairness of billing (bn)n as:

F =
∑
n∈N

∣∣∣∣ Vn∑
m Vm

− bn∑
m bm

∣∣∣∣ (3)
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Load Profile

Data/Default Profile



Load Profile

DLP equilibrium Profile (SC optimum)



Load Profile

HLP equilibrium Profile



Efficiency versus Fairness



Consumers utility

→ user n has a preferred profile x̂na = (x̂hna)h for each of his
flexible appliance a ∈ An.
→ Disutility:

un(xn)
def
= −

∑
a∈An

ωh
na

∑
h

∥∥∥xhn − x̂hn

∥∥∥2
(4)

→ user n now aims at minimizing:

πn(xn)
def
= bn(x)− un(xn) (5)

while satisfying all previous constraints x ∈ Xn. The social cost of
the system is therefore modified as:

SC(x) =
∑
n

πn(x) =
∑
n

bn(x)− un(xn) (6)



Convergence of the BR process

To implement this process, we should ask for a fast convergence of
the algorithm:

With quadratic system costs functions Ch = ah1`
h + ah2(`h)2,

we have a potential game
→ the BRD will converge to the NE in O( 1

K )

Can we have a convergence result in the general case?

Theorem (Asymptotic Convergence of the continuous BRD)

We consider the dynamics: ẋn(t) = BRn(x−n(t))− xn(t). If the
game is dissipative, then x(t) is asymptotically convergent, and
H(x) = maxy∈X 〈y − x ,Φ(x)〉 is a Lyapunov function.

Can we have a convergence result of the discrete dynamic?



Future developments

add nonlinear network (AC) constraints/losses,

study the impact of customer’s utility or ”preferred”
consumption → new social optimum and efficiency,

study a larger network model with several producers, providers
and customers,

study a model with different type of customers (atomic as
industrials, and non atomic as residential customers) in the
framework of composite games.

THANK YOU
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