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Demand Response: exploiting consumer flexibilities

Set of techniques to exploit consumers flexibilities.

Different goals:

reducing production peaks and peak power plants,

increasing distributed renewable energy insertion,

avoiding congestion on the power grid.
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Why considering a Game Theory approach?

individual agents (residential/industrial consumers) or aggregators make
consumption decisions based on price incentives and personal utilities,

individual decisions have an impact on the distribution level, and affect the
behavior of others (congestion on the network, market prices) ,

adopting a decentralized point of view: distributed optimization for
tractability, minimizing the unveiled information of consumers and respect
privacy constraints.
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The role of (residential) aggregators

“Optimize” the flexibilities of a pool of consumers

Aggregator

n1,1

n1,2

n2,1

n2,2

n3,1

n3,2

Market

to directly give electricity to those consumers at lower rates by interacting
with markets,

to sell flexibility and curtailment to an other market actor or a grid operator.
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The model: electricity consumption game

“optimization” horizon as a finite time set T = {1, . . . ,T}.

district of N flexible consumers N = {1, . . . ,N}

I with nonflexible consumption (fix demand) profile (lighting, cooking, TV set...)
denoted (Dn,t)t∈T

I and flexible consumption (Electric vehicle charging, water heater, washing
machine,. . . ): variable profile, controlled by an ECS, denoted (`n,t)t∈T

one aggregator gets the aggregated nonflexible demand Dt =
∑

n∈N Dn,t

and flexible profile Lt
def
=
∑

n∈N `n,t .
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Aggregator price functions for flexible load

For each t, the aggregator has a per-unit energy price function Lt 7→ ct(Lt)
Examples:

minimize distance to vector of bid quantities (Qt)t∈T on DA market

minimizing production costs with self production.

Remark

production costs Ct(.) ⇔ prices ct(.) : ct(Lt)
def
= 1

Lt

[
Ct(Dt + Lt)− Ct(Dt)

]
.

general assumption: ct(.) smooth (D2), convex, strictly increasing

Remark: for instance affine prices ∀t ∈ T , ct(`) = αt + βt` with αt , βt ∈ (R∗+)2 .
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A Flexible Consumer’s constraints and model

For each consumer n ∈ N :

n has a flexible energy demand En to be satisfied over T (e.g. EV battery),

for each time period t, the flexible load is bounded between `n,t and `n,t

I rm 1: agg. constraints of appliances, unavailability at time periods
I rm 2: more complex models exist: thermostatic regulation loads, ”block”

loads, discrete power levels.

consumer minimizes the bill bn(`n, `−n)
def
=
∑

t∈T `n,tct(Lt)

min
`n∈RT

bn(`n, `−n) (1a)

s.t.

∑
t∈T `n,t = En ,

(1b)

`n,t ≤ `n,t ≤ `n,t , ∀t ∈ T .

(1c)

I rm 1: depends on the profile of others through Lt
I rm 2: simple billing mechanism, aggregator could optimize its pricing.
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Nash Equilibrium

The minimization of each player depends on the others decisions!

concept of “optimality” → Nash Equilibrium `NE

∀`n ∈ Ln, bn(`NEn , `NE−n) ≤ bn(`n, `
NE
−n)

⇔ `NEn ∈ argmin
`n∈Ln

bn(`n, `
NE
−n)

Existence

and Uniqueness .
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Measuring sub-optimality: the price of Anarchy

Definition: The social cost is SC(`)
def
=
∑

n bn(`)

=
∑

t Ltct(Lt) .

A NE does not necessarily minimize the social cost!
If the social cost is high at the equilibrium, our system is inefficient!

Price of Anarchy:

PoA(G) =
sup`∈LNE SC(`)

inf`∈L SC(`)
.

Bad news: bounding the PoA in general is hard . . .

. . . and it can be arbitrarily high asymptotically, simply with (pos. coeffs)
polynomial price functions!

Good news: the PoA is low with the proposed mechanism!
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A bound on the PoA in the affine case

With affine prices for all time periods ct(Lt) = αt + βtLt , we have the bound:

PoA(G) ≤ 1 + 3
4 supt∈T

(
1 + αt

βt L̄t

)−1
.
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Computation of the equilibrium profile

To implement efficiently the Demand Response program, we need that consumers
reach the (Nash) equilibrium profiles:

autonomous computation: consumers are not spending hours to gain a few
euros (autonomous ECS device) . . .

fast algorithm: scalable for small time steps and large number of consumers,
equilibrium can be recomputed several times . . .

distributed and decentralized: a minimum of private information is exchanged
with a coordinator (agg.), consumers keep their private constraints
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Two decentralized algorithms

Best Response (BR) Algorithm

/ Simultaneous Improving Response (SIR)

Require: `(0), kmax, εstop,

γ

k ← 0, ε(0) ← εstop
while ε(k) ≥ εstop & k ≤ kmax do

for n = 1 to N do
s(k)
n =

∑
m<n `

(k+1)
m +

∑
m>n `

(k)
m

end for
ε(k) =

∥∥`(k+1) − `(k)
∥∥

k ← k + 1
end while

rm: sequential/simultaneous: SIR can be parallelized, but not BR (divergence)!
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Fast Convergence Results

Theorem (Convergence of BR)

With aff. prices, BR cvg to `NE with:∥∥∥`(k) − `NE
∥∥∥

2
≤ CN × 1√

k

Theorem (Convergence of SIR)

With strong monot., SIR cvg with:∥∥∥`NE − `(k)
∥∥∥

2
< (1− a2

NM2 )k
∥∥`NE − `(0)

∥∥
2

Paulin Jacquot (EDF - Inria - CMAP) Game-theoretic Demand Response January 6, 2018 17 / 25



Fast Convergence Results

Theorem (Convergence of BR)

With aff. prices, BR cvg to `NE with:∥∥∥`(k) − `NE
∥∥∥

2
≤ CN × 1√

k

Theorem (Convergence of SIR)

With strong monot., SIR cvg with:∥∥∥`NE − `(k)
∥∥∥

2
< (1− a2

NM2 )k
∥∥`NE − `(0)

∥∥
2

Paulin Jacquot (EDF - Inria - CMAP) Game-theoretic Demand Response January 6, 2018 17 / 25



Fast Convergence Results

Theorem (Convergence of BR)

With aff. prices, BR cvg to `NE with:∥∥∥`(k) − `NE
∥∥∥

2
≤ CN × 1√

k

Theorem (Convergence of SIR)

With strong monot., SIR cvg with:∥∥∥`NE − `(k)
∥∥∥

2
< (1− a2

NM2 )k
∥∥`NE − `(0)

∥∥
2

Paulin Jacquot (EDF - Inria - CMAP) Game-theoretic Demand Response January 6, 2018 17 / 25



How complex are subproblems?

To solve the projection on Ln / to solve BRn:

for constraints Ln = {
∑

t∈T `n,t = En , `n,t ≤ `n,t ≤ `n,t ,∀t ∈ T }
(and with affine prices) → O(T ) algo.

for Ln a polytope → QP → something like O(T 3.5)...

for Ln a general compact convex and general convex prices: . . .

for Ln nonconvex (e.g. discrete power levels or block constraints): long...

Not every model is scalable to small time steps!!

Paulin Jacquot (EDF - Inria - CMAP) Game-theoretic Demand Response January 6, 2018 18 / 25



How complex are subproblems?

To solve the projection on Ln / to solve BRn:

for constraints Ln = {
∑

t∈T `n,t = En , `n,t ≤ `n,t ≤ `n,t ,∀t ∈ T }
(and with affine prices) → O(T ) algo.

for Ln a polytope → QP → something like O(T 3.5)...

for Ln a general compact convex and general convex prices: . . .

for Ln nonconvex (e.g. discrete power levels or block constraints): long...

Not every model is scalable to small time steps!!

Paulin Jacquot (EDF - Inria - CMAP) Game-theoretic Demand Response January 6, 2018 18 / 25



How complex are subproblems?

To solve the projection on Ln / to solve BRn:

for constraints Ln = {
∑

t∈T `n,t = En , `n,t ≤ `n,t ≤ `n,t ,∀t ∈ T }
(and with affine prices) → O(T ) algo.

for Ln a polytope → QP → something like O(T 3.5)...

for Ln a general compact convex and general convex prices: . . .

for Ln nonconvex (e.g. discrete power levels or block constraints): long...

Not every model is scalable to small time steps!!

Paulin Jacquot (EDF - Inria - CMAP) Game-theoretic Demand Response January 6, 2018 18 / 25



How complex are subproblems?

To solve the projection on Ln / to solve BRn:

for constraints Ln = {
∑

t∈T `n,t = En , `n,t ≤ `n,t ≤ `n,t ,∀t ∈ T }
(and with affine prices) → O(T ) algo.

for Ln a polytope → QP → something like O(T 3.5)...

for Ln a general compact convex and general convex prices: . . .

for Ln nonconvex (e.g. discrete power levels or block constraints): long...

Not every model is scalable to small time steps!!

Paulin Jacquot (EDF - Inria - CMAP) Game-theoretic Demand Response January 6, 2018 18 / 25



How complex are subproblems?

To solve the projection on Ln / to solve BRn:

for constraints Ln = {
∑

t∈T `n,t = En , `n,t ≤ `n,t ≤ `n,t ,∀t ∈ T }
(and with affine prices) → O(T ) algo.

for Ln a polytope → QP → something like O(T 3.5)...

for Ln a general compact convex and general convex prices: . . .

for Ln nonconvex (e.g. discrete power levels or block constraints): long...

Not every model is scalable to small time steps!!

Paulin Jacquot (EDF - Inria - CMAP) Game-theoretic Demand Response January 6, 2018 18 / 25



1 Introduction: Demand Response: exploiting consumer flexibilities
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Online versus Offline procedure

the coordination need to be done before real time: for instance the NE is
computed at 11am for the next 24 hours,

the coordination depends on several parameters,

in particular, the price signals ct depend on the aggregated nonflexible
consumption profile Dt

those parameters need to be forecast in advance to compute the NE

to minimize forecast errors and take updates, we consider an online procedure
with “receding horizons”
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Online procedure

Start at t = 1

while t ≤ T do
Set new horizon T (t) = {t, t + 1, . . . ,T}
Get D forecast on T (t): D̂(t) def

=
(
D̂(t)

s

)
t≤s≤T

Re-compute prices ct(.) for t ∈ T (t) with D̂
Run Algo. SIRD or BRD to compute NE `(t) on T (t)

for each user n ∈ N do
Realize computed profile on time t, `

(t)
n,t

Update energy demand En ← En − `(t)
n,t

end for
Wait for t + 1

end while
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Forecasts of nonflexible Demand

Estimated with historical data
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Online procedure achieves significant gains!

Cons. Scenario Social Cost Avg. Price Gain

Uncoordinated $ 1257.2 0.200 $/kWh —

Offline DR $ 1231.6 0.195 $/kWh 2.036%

Online DR $ 1131.1 0.180 $/kWh 10.03%
Perfect forecast DR $ 1075.2 0.171 $/kWh 14.47%

Optimal scenario $ 1056.8 0.169 $/kWh 15.94%
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Conclusion

Game theoretic residential demand response might be worthy and efficient!

An online procedure will enable to limit the impact of forecast parameters

Several extensions to get closer to implementation:

other uncertain parameters: change in consumers constraints, disconnection,
balancing market

integration of distributed renewable generation,

local network constraints on the distribution grid: may affect the equilibrium
and convergence of algos!
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THANK YOU!
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