Efficiency of Game-Theoretic Energy Consumption in the Smart Grid

P. Jacquot 1,2 O.Beaude 1 S. Gaubert 2 N.Oudjane 1

¹EDF Lab

²Inria and CMAP, École Polytechnique

July 6, 2017

SING13 Paris Dauphine University

Paulin J. (EDF - Inria)

Efficiency of Electric Consumption Game

July 6, 2017 1 / 13

• Set of discrete time periods \mathcal{T} (finite horizon)

• Set of discrete time periods \mathcal{T} (finite horizon) \rightarrow for each time, production cost $C_t(\ell_t)$ (increasing and convex function of total load).

 One distributor/aggregator d provides a set N of N residential consumers

- One distributor/aggregator d provides a set N of N residential consumers
- Consumers send their desired consumption profiles (l^t_n)_t,

- One distributor/aggregator d provides a set N of N residential consumers
- Consumers send their desired consumption profiles (l^t_n)_t,
- Aggregator broadcast costs and aggregated load $(\ell^t)_t$,

- One distributor/aggregator d provides a set N of N residential consumers
- Consumers send their desired consumption profiles (l^t_n)_t,
- Aggregator broadcast costs and aggregated load $(\ell^t)_t$,
- Consumers eventually reach an equilibrium.

$$\sum_{t\in\mathcal{T}}\ell_n^t = E_n, \qquad (1b)$$
(1c)

$$\sum_{t \in \mathcal{T}} \ell_n^t = E_n, \qquad (1b)$$
$$\underline{\ell}_n^t \le \ell_n^t \le \overline{\ell}_n^t, \forall t \in \mathcal{T} . \qquad (1c)$$

$$\begin{array}{ll} \min_{\ell_n \in \mathbb{R}^T} & b_n(\ell_n, \ell_{-n}) & (1a) \\ \text{s.t.} & \sum_{t \in \mathcal{T}} \ell_n^t = E_n, & (1b) \\ & \underline{\ell}_n^t \leq \ell_n^t \leq \overline{\ell}_n^t, \forall t \in \mathcal{T} . & (1c) \end{array}$$

$$\min_{\ell_n \in \mathbb{R}^T} \quad b_n(\ell_n, \ell_{-n})$$
(1a)
s.t.
$$\sum_{t \in \mathcal{T}} \ell_n^t = E_n,$$
(1b)
$$\underline{\ell}_n^t \le \ell_n^t \le \overline{\ell}_n^t, \forall t \in \mathcal{T} .$$
(1c)

where b_n is the dynamic price for user n (bill), taken as:

Paulin J. (EDF - Inria)

$$\min_{\ell_n \in \mathbb{R}^T} \quad b_n(\ell_n, \ell_{-n})$$
(1a)
s.t.
$$\sum_{t \in \mathcal{T}} \ell_n^t = E_n,$$
(1b)
$$\underline{\ell}_n^t \le \ell_n^t \le \overline{\ell}_n^t, \forall t \in \mathcal{T} .$$
(1c)

where b_n is the dynamic price for user n (bill), taken as:

Definition (Daily Prop.)
$$b_n^{\text{DP}}(\ell) = \frac{E_n}{\sum_m E_m} \sum_{t \in \mathcal{T}} C_t(\ell^t)$$

Paulin J. (EDF - Inria)

$$\min_{\ell_n \in \mathbb{R}^T} \quad b_n(\ell_n, \ell_{-n})$$
(1a)
s.t.
$$\sum_{t \in \mathcal{T}} \ell_n^t = E_n,$$
(1b)
$$\underline{\ell}_n^t \le \ell_n^t \le \overline{\ell}_n^t, \forall t \in \mathcal{T} .$$
(1c)

where b_n is the dynamic price for user n (bill), taken as:

Definition (Daily Prop.)
$$b_n^{\mathsf{DP}}(\ell) = \frac{E_n}{\sum_m E_m} \sum_{t \in \mathcal{T}} C_t(\ell^t)$$

weighted potential game

$$\min_{\ell_n \in \mathbb{R}^{\mathcal{T}}} \quad b_n(\ell_n, \ell_{-n})$$
(1a)
s.t.
$$\sum_{t \in \mathcal{T}} \ell_n^t = E_n,$$
(1b)
$$\underline{\ell}_n^t \le \ell_n^t \le \overline{\ell}_n^t, \forall t \in \mathcal{T} .$$
(1c)

where b_n is the dynamic price for user n (bill), taken as:

Definition (Daily Prop.)
$$b_n^{\mathsf{DP}}(\ell) = \frac{E_n}{\sum_m E_m} \sum_{t \in \mathcal{T}} C_t(\ell^t)$$

Definition (Hourly Prop.)
$$b_n^{\mathsf{HP}}(\ell) = \sum_{t \in \mathcal{T}} \frac{\ell_n^t}{\ell^t} C_t(\ell^t)$$

weighted potential game

ightarrow N-person minimization game $\mathcal{G} := \left(\mathcal{N}, \mathcal{L}, (b_n)_n
ight)$

Paulin J. (EDF - Inria)

$$\min_{\ell_n \in \mathbb{R}^{\mathcal{T}}} \quad b_n(\ell_n, \ell_{-n})$$
(1a)
s.t.
$$\sum_{t \in \mathcal{T}} \ell_n^t = E_n,$$
(1b)
$$\underline{\ell}_n^t \le \ell_n^t \le \overline{\ell}_n^t, \forall t \in \mathcal{T} .$$
(1c)

where b_n is the dynamic price for user n (bill), taken as:

Definition (Daily Prop.)
$$b_n^{\mathsf{DP}}(\ell) = \frac{E_n}{\sum_m E_m} \sum_{t \in \mathcal{T}} C_t(\ell^t)$$

Definition (Hourly Prop.)
$$b_n^{\mathsf{HP}}(\ell) = \sum_{t \in \mathcal{T}} \frac{\ell_n^t}{\ell^t} C_t(\ell^t)$$

weighted potential game

ightarrow N-person minimization game $\mathcal{G} := \left(\mathcal{N}, \mathcal{L}, (b_n)_n
ight)$

Paulin J. (EDF - Inria)

$$\min_{\ell_n \in \mathbb{R}^{\mathcal{T}}} \quad b_n(\ell_n, \ell_{-n})$$
(1a)
s.t.
$$\sum_{t \in \mathcal{T}} \ell_n^t = E_n,$$
(1b)
$$\underline{\ell}_n^t \le \ell_n^t \le \overline{\ell}_n^t, \forall t \in \mathcal{T} .$$
(1c)

where b_n is the dynamic price for user n (bill), taken as:

Definition (Daily Prop.)
$$b_n^{\text{DP}}(\ell) = \frac{E_n}{\sum_m E_m} \sum_{t \in \mathcal{T}} C_t(\ell^t)$$

weighted potential game

Definition (Hourly Prop.)
$$b_n^{HP}(\ell) = \sum_{t \in \mathcal{T}} \frac{\ell_n^t}{\ell^t} C_t(\ell^t)$$

"class B" routing game of Orda et al.

ightarrow N-person minimization game $\mathcal{G} := \left(\mathcal{N}, \mathcal{L}, (b_n)_n\right)$

Paulin J. (EDF - Inria)

Efficiency of Electric Consumption Game

July 6, 2017 4 / 13

• each player minimizes $SC(\ell)$

- each player minimizes $SC(\ell)$
- unique Nash Equilibrium, minimum of convex SC,

- each player minimizes $SC(\ell)$
- unique Nash Equilibrium, minimum of convex SC,
- however, this cost-sharing method is unfair to users:

- each player minimizes $SC(\ell)$
- unique Nash Equilibrium, minimum of convex SC,
- however, this cost-sharing method is unfair to users: Example:

•
$$\mathcal{T} = \{ \mathsf{Peak}, \mathsf{Offpeak} \}, \ \mathcal{N} = \{ 1, 2 \}, \ E_1 = 10, E_2 = 10.$$

- each player minimizes $SC(\ell)$
- unique Nash Equilibrium, minimum of convex SC,
- however, this cost-sharing method is unfair to users:
 Example:

•
$$\mathcal{T} = \{ \mathsf{Peak}, \mathsf{Offpeak} \}, \ \mathcal{N} = \{1, 2\}, \ E_1 = 10, E_2 = 10.$$

• Costs
$$C_P = \ell^2$$
, $C_O = \varepsilon$,

- each player minimizes $SC(\ell)$
- unique Nash Equilibrium, minimum of convex SC,
- however, this cost-sharing method is unfair to users:
 Example:
 - $T = \{ \text{Peak}, \text{Offpeak} \}, N = \{1, 2\}, E_1 = 10, E_2 = 10.$

• Costs
$$C_P = \ell^2, \ C_O = \varepsilon$$
,

• " p_1 ": "I make an effort, I can consume on Offpeak": $\ell_O^1 = E_1$

- each player minimizes $SC(\ell)$
- unique Nash Equilibrium, minimum of convex SC,
- however, this cost-sharing method is unfair to users:
 Example:
 - $T = \{ \text{Peak}, \text{Offpeak} \}, N = \{1, 2\}, E_1 = 10, E_2 = 10.$

• Costs
$$C_P = \ell^2$$
, $C_O = \varepsilon$,

- " p_1 ": "I make an effort, I can consume on Offpeak": $\ell_0^1 = E_1$
- " p_2 ": "I don't want to make an effort, I load on Peak: $\ell_P^2 = E_2$

- each player minimizes $SC(\ell)$
- unique Nash Equilibrium, minimum of convex SC,
- however, this cost-sharing method is unfair to users:
 Example:

•
$$\mathcal{T} = \{ \mathsf{Peak}, \mathsf{Offpeak} \}, \ \mathcal{N} = \{ 1, 2 \}, \ E_1 = 10, E_2 = 10.$$

• Costs
$$C_P = \ell^2, \ C_O = \varepsilon$$
,

- " p_1 ": "I make an effort, I can consume on Offpeak": $\ell_O^1 = E_1$
- " p_2 ": "I don't want to make an effort, I load on Peak: $\ell_P^2 = E_2$

•
$$b_1 = \frac{1}{2}(\varepsilon + 100), \ b_2 = \frac{1}{2}(\varepsilon + 100)$$

- each player minimizes $SC(\ell)$
- unique Nash Equilibrium, minimum of convex SC,
- however, this cost-sharing method is unfair to users:
 Example:

•
$$\mathcal{T} = \{ \mathsf{Peak}, \mathsf{Offpeak} \}, \ \mathcal{N} = \{ 1, 2 \}, \ E_1 = 10, E_2 = 10.$$

• Costs
$$C_P = \ell^2, \ C_O = \varepsilon$$
,

• "
$$p_1$$
": "I make an effort, I can consume on Offpeak": $\ell_O^1 = E_1$

• " p_2 ": "I don't want to make an effort, I load on Peak: $\ell_P^2 = E_2$

•
$$b_1 = \frac{1}{2}(\varepsilon + 100), \ b_2 = \frac{1}{2}(\varepsilon + 100)$$

 p_2 is responsible for all the costs, but p_1 pays the same price!

- each player minimizes $SC(\ell)$
- unique Nash Equilibrium, minimum of convex SC,
- however, this cost-sharing method is unfair to users:
 Example:

•
$$\mathcal{T} = \{ \mathsf{Peak}, \mathsf{Offpeak} \}, \ \mathcal{N} = \{ 1, 2 \}, \ E_1 = 10, E_2 = 10.$$

• Costs
$$C_P = \ell^2, \ C_O = \varepsilon$$
,

• "
$$p_1$$
": "I make an effort, I can consume on Offpeak": $\ell_O^1 = E_1$

• " p_2 ": "I don't want to make an effort, I load on Peak: $\ell_P^2 = E_2$

•
$$b_1 = \frac{1}{2}(\varepsilon + 100), \ b_2 = \frac{1}{2}(\varepsilon + 100)$$

 p_2 is responsible for all the costs, but p_1 pays the same price!

 \rightarrow The HP billing will be fairer to users.

Paulin J. (EDF - Inria)

Measuring Efficiency: the Price of Anarchy

NASH EQUILIBRIUM (NE) $(\ell_n)_n$ is a NE *IFF* for all *n*:

Paulin J. (EDF - Inria)

$$\forall \ell_n' \in \mathcal{L}_n, \ b_n(\ell_n, \ell_{-n}) \leq b_n(\ell_n', \ell_{-n})$$

Measuring Efficiency: the Price of Anarchy

NASH EQUILIBRIUM (NE)
$$(\ell_n)_n$$
 is a NE IFF for all n:
 $\forall \ell'_n \in \mathcal{L}_n, \ b_n(\ell_n, \ell_{-n}) \leq b_n(\ell'_n, \ell_{-n})$ SOCIAL OPTIMUM (SO)
 $(\ell_n^*)_n$ is a SO IFF:
 $(\ell_n^*)_n = \operatorname{argmin}_n \sum_{\ell \in \mathcal{L}} b_n(\ell)$

Measuring Efficiency: the Price of Anarchy

NASH EQUILIBRIUM (NE)
$$(\ell_n)_n$$
 is a NE IFF for all n:
 $\forall \ell'_n \in \mathcal{L}_n, \ b_n(\ell_n, \ell_{-n}) \leq b_n(\ell'_n, \ell_{-n})$ SOCIAL OPTIMUM (SO)
 $(\ell_n^*)_n$ is a SO IFF:
 $(\ell_n^*)_n = \operatorname{argmin}_n \sum_n b_n(\ell)$

where $SC(.) = \sum_{n} b_{n}(.)$ is the social cost.

Measuring Efficiency: the Price of Anarchy

NASH EQUILIBRIUM (NE)
$$(\ell_n)_n$$
 is a NE IFF for all n :
 $\forall \ell'_n \in \mathcal{L}_n, \ b_n(\ell_n, \ell_{-n}) \leq b_n(\ell'_n, \ell_{-n})$ SOCIAL OPTIMUM (SO)
 $(\ell_n^*)_n$ is a SO IFF:
 $(\ell_n^*)_n = \underset{\ell \in \mathcal{L}}{\operatorname{argmin}} \sum_n b_n(\ell)$

where $SC(.) = \sum_{n} b_{n}(.)$ is the social cost.

What is the maximal PoA with $b_n^{HP}(\ell) = \sum_{t \in \mathcal{T}} \frac{\ell_n^t}{\ell^t} C_t(\ell^t)$

Paulin J. (EDF - Inria)

Measuring Efficiency: the Price of Anarchy

NASH EQUILIBRIUM (NE)
$$(\ell_n)_n$$
 is a NE IFF for all n:
 $\forall \ell'_n \in \mathcal{L}_n, \ b_n(\ell_n, \ell_{-n}) \leq b_n(\ell'_n, \ell_{-n})$ SOCIAL OPTIMUM (SO)
 $(\ell_n^*)_n$ is a SO IFF:
 $(\ell_n^*)_n = \operatorname{argmin}_{\ell \in \mathcal{L}} \sum_n b_n(\ell)$

where $SC(.) = \sum_{n} b_{n}(.)$ is the social cost.

What is the maximal PoA with
$$\begin{split} b_n^{\text{HP}}(\ell) &= \sum_{t \in \mathcal{T}} \frac{\ell_t^n}{\ell^t} C_t(\ell^t) \\ b_n^{\text{HP}}(\ell) &= \sum_t \ell_n^t c_t(\ell^t) \\ \text{with } c_t(\ell^t) &= \frac{C_t(\ell^t)}{\ell^t}. \end{split}$$

Measuring Efficiency: the Price of Anarchy

NASH EQUILIBRIUM (NE)
$$(\ell_n)_n$$
 is a NE IFF for all n:
 $\forall \ell'_n \in \mathcal{L}_n, \ b_n(\ell_n, \ell_{-n}) \leq b_n(\ell'_n, \ell_{-n})$ SOCIAL OPTIMUM (SO)
 $(\ell_n^*)_n$ is a SO IFF:
 $(\ell_n^*)_n = \operatorname{argmin}_{\ell \in \mathcal{L}} \sum_n b_n(\ell)$

• Assume there are N players with same demand $E_n = 1$,

Paulin J. (EDF - Inria)

- Assume there are N players with same demand $E_n = 1$,
- Cost of player *n*: $b_n = x_n \left(\frac{x}{N}\right)^p + (E_n x_n) \times 1$,

- Assume there are N players with same demand $E_n = 1$,
- Cost of player *n*: $b_n = x_n \left(\frac{x}{N}\right)^p + (E_n x_n) \times 1$,

• NE:
$$\hat{x} = N \left(1 + \frac{p}{N}\right)^{-1/p}$$
, SO: $x^* = N(1+p)^{-1/p}$,

- Assume there are N players with same demand $E_n = 1$,
- Cost of player *n*: $b_n = x_n \left(\frac{x}{N}\right)^p + (E_n x_n) \times 1$,
- NE: $\hat{x} = N \left(1 + \frac{p}{N}\right)^{-1/p}$, SO: $x^* = N(1+p)^{-1/p}$,

•
$$\frac{\mathrm{sc}(\hat{x})}{N} = (1 + \frac{p}{N})^{(-1+1/p)} + 1 - (1 + \frac{p}{N})^{-1/p} \xrightarrow[N \to \infty]{} 1$$

• Assume there are *N* players with same demand $E_n = 1$, • Cost of player *n*: $b_n = x_n \left(\frac{x}{N}\right)^p + (E_n - x_n) \times 1$, • NE: $\hat{x} = N \left(1 + \frac{p}{N}\right)^{-1/p}$, SO: $x^* = N(1+p)^{-1/p}$, • $\frac{\mathfrak{SC}(\hat{x})}{N} = (1 + \frac{p}{N})^{(-1+1/p)} + 1 - (1 + \frac{p}{N})^{-1/p} \xrightarrow[N \to \infty]{} 1$ • $\frac{\mathfrak{SC}(\ell^*)}{N} = (1+p)^{(-1+1/p)} + 1 - (1+p)^{-1/p} \xrightarrow[p \to \infty]{} 0$

Definition (Roughgarden and Schoppmann, 2015)

Local Smoothness.

Paulin J. (EDF - Inria)

A cost minimization game is locally (λ, μ) -smooth with respect to y iff for all admissible outcome x:

$$\sum_{n=1}^{N} b_n(x_n, x_{-n}) + \nabla_{x_n} b_n(x)^{\mathsf{T}}(y_n - x_n) \leq \lambda \mathrm{SC}(y) + \mu \mathrm{SC}(x).$$

Definition (Roughgarden and Schoppmann, 2015)

Local Smoothness.

A cost minimization game is locally (λ, μ) -smooth with respect to y iff for all admissible outcome x:

$$\sum_{n=1}^{N} b_n(x_n, x_{-n}) + \nabla_{x_n} b_n(x)^T (y_n - x_n) \leq \lambda \mathrm{SC}(y) + \mu \mathrm{SC}(x).$$

Theorem (Roughgarden and Schoppmann, 2015)

If costs functions are polynomials with positive coefficients of degree $\leq d$, then $\operatorname{PoA} \leq \frac{3}{2}$ for d = 1 and $\operatorname{PoA} \leq \left(\frac{1+\sqrt{d+1}}{2}\right)^{d+1}$ for $d \geq 2$.

Theorem (J. et al., 2017)

Assume linear prices on the arcs:

$$c_t(\ell) = \alpha_t^t + \beta_t \ell \quad \left(= \frac{C_t(\ell)}{\ell} \right),$$

Theorem (J. et al., 2017)

Assume linear prices on the arcs:

$$c_t(\ell) = \alpha_t^t + \beta_t \ell \quad \left(= \frac{C_t(\ell)}{\ell}\right),$$

Then the PoA is upper bounded:

$$\begin{split} \mathrm{PoA} &\leq \rho^{SL} = \frac{1}{2} \left(1 + \sqrt{1 + \frac{1}{(1+r)^2}} + \frac{1}{2(1+r)} \right) \\ &\leq 1 + \frac{3}{4} \frac{1}{1+r} \;, \end{split}$$

where $r = \inf_{t \in \mathcal{T}} \alpha^t / (\beta_t \overline{\ell}^t)$.

• Assume linear prices: for all $t \in \mathcal{T}$, $c_t(\ell^t) = \alpha_t + \beta_t \ell^t$.

Paulin J. (EDF - Inria)

- Assume linear prices: for all $t \in \mathcal{T}$, $c_t(\ell^t) = \alpha_t + \beta_t \ell^t$.
- "Interior Equilibrium": for all $n \in \mathcal{N}$, for all $t, \ell_n^t > 0$, then:

- Assume linear prices: for all $t \in \mathcal{T}$, $c_t(\ell^t) = \alpha_t + \beta_t \ell^t$.
- "Interior Equilibrium": for all $n \in \mathcal{N}$, for all $t, \ell_n^t > 0$, then:

NASH EQUILIBRIUM (NE):
$$\hat{\ell}_n^h$$
$$\frac{1}{\sum_{k \in \mathcal{H}} \frac{\beta_h}{\beta_k}} \left[\frac{1}{N+1} \left(\sum_{k \in \mathcal{H} \setminus \{h\}} \frac{\alpha_k - \alpha_h}{\beta_k} \right) + \mathcal{E}_n \right]$$

- Assume linear prices: for all $t \in \mathcal{T}$, $c_t(\ell^t) = \alpha_t + \beta_t \ell^t$.
- "Interior Equilibrium": for all $n \in \mathcal{N}$, for all t, $\ell_n^t > 0$, then:

NASH EQUILIBRIUM (NE):
$$\hat{\ell}_{n}^{h}$$

$$\frac{1}{\sum_{k \in \mathcal{H}} \frac{\beta_{h}}{\beta_{k}}} \left[\frac{1}{N+1} \left(\sum_{k \in \mathcal{H} \setminus \{h\}} \frac{\alpha_{k} - \alpha_{h}}{\beta_{k}} \right) + E_{n} \right] \left[\frac{1}{\sum_{k \in \mathcal{H}} \frac{\beta_{h}}{\beta_{k}}} \left[\frac{1}{2} \left(\sum_{k \in \mathcal{H} \setminus \{h\}} \frac{\alpha_{k} - \alpha_{h}}{\beta_{k}} \right) + E \right] \right]$$

- Assume linear prices: for all $t \in \mathcal{T}$, $c_t(\ell^t) = \alpha_t + \beta_t \ell^t$.
- "Interior Equilibrium": for all $n \in \mathcal{N}$, for all t, $\ell_n^t > 0$, then:

NASH EQUILIBRIUM (NE):
$$\hat{\ell}_{n}^{h}$$

$$\frac{1}{\sum_{k \in \mathcal{H}} \frac{\beta_{h}}{\beta_{k}}} \left[\frac{1}{N+1} \left(\sum_{k \in \mathcal{H} \setminus \{h\}} \frac{\alpha_{k} - \alpha_{h}}{\beta_{k}} \right) + E_{n} \right] \qquad \frac{1}{\sum_{k \in \mathcal{H}} \frac{\beta_{h}}{\beta_{k}}} \left[\frac{1}{2} \left(\sum_{k \in \mathcal{H} \setminus \{h\}} \frac{\alpha_{k} - \alpha_{h}}{\beta_{k}} \right) + E \right]$$

Explicit price of Anarchy:

$$\mathsf{PoA} = 1 + \frac{\left(1 - \frac{4N}{(N+1)^2}\right)V}{-V + 8\left(\sum_{h}\frac{\alpha_h}{\beta_h}E + E^2\right)}$$

where $V \stackrel{\text{def}}{=} \sum_{k,h \in \mathcal{H}^2} \frac{(\alpha_k - \alpha_h)^2}{\beta_k \beta_h}$.

Paulin J. (EDF - Inria)

July 6, 2017 11 / 13

- Assume linear prices: for all $t \in \mathcal{T}$, $c_t(\ell^t) = \alpha_t + \beta_t \ell^t$.
- "Interior Equilibrium": for all $n \in \mathcal{N}$, for all t, $\ell_n^t > 0$, then:

NASH EQUILIBRIUM (NE):
$$\hat{\ell}_{n}^{h}$$

$$\frac{1}{\sum_{k \in \mathcal{H}} \frac{\beta_{h}}{\beta_{k}}} \left[\frac{1}{N+1} \left(\sum_{k \in \mathcal{H} \setminus \{h\}} \frac{\alpha_{k} - \alpha_{h}}{\beta_{k}} \right) + E_{n} \right] \qquad \frac{1}{\sum_{k \in \mathcal{H}} \frac{\beta_{h}}{\beta_{k}}} \left[\frac{1}{2} \left(\sum_{k \in \mathcal{H} \setminus \{h\}} \frac{\alpha_{k} - \alpha_{h}}{\beta_{k}} \right) + E \right]$$

Explicit price of Anarchy:

$$\mathsf{PoA} = 1 + \frac{\left(1 - \frac{4N}{(N+1)^2}\right)V}{-V + 8\left(\sum_{h}\frac{\alpha_h}{\beta_h}N\bar{E} + N^2\bar{E}^2\right)}$$

where $V \stackrel{\text{def}}{=} \sum_{k,h \in \mathcal{H}^2} \frac{(\alpha_k - \alpha_h)^2}{\beta_k \beta_h}$.

Paulin J. (EDF - Inria)

July 6, 2017 11 / 13

- Assume linear prices: for all $t \in \mathcal{T}$, $c_t(\ell^t) = \alpha_t + \beta_t \ell^t$.
- "Interior Equilibrium": for all $n \in \mathcal{N}$, for all t, $\ell_n^t > 0$, then:

NASH EQUILIBRIUM (NE):
$$\hat{\ell}_{n}^{h}$$

$$\frac{1}{\sum_{k \in \mathcal{H}} \frac{\beta_{h}}{\beta_{k}}} \left[\frac{1}{N+1} \left(\sum_{k \in \mathcal{H} \setminus \{h\}} \frac{\alpha_{k} - \alpha_{h}}{\beta_{k}} \right) + E_{n} \right] \qquad \frac{1}{\sum_{k \in \mathcal{H}} \frac{\beta_{h}}{\beta_{k}}} \left[\frac{1}{2} \left(\sum_{k \in \mathcal{H} \setminus \{h\}} \frac{\alpha_{k} - \alpha_{h}}{\beta_{k}} \right) + E \right]$$

Explicit price of Anarchy:

$$\mathsf{PoA} = 1 + \frac{\left(1 - \frac{4N}{(N+1)^2}\right)V}{-V + 8\left(\sum_{h}\frac{\alpha_h}{\beta_h}N\bar{E} + N^2\bar{E}^2\right)} \xrightarrow[N \to \infty]{} 1$$

where $V \stackrel{\text{def}}{=} \sum_{k,h \in \mathcal{H}^2} \frac{(\alpha_k - \alpha_h)^2}{\beta_k \beta_h}$.

Paulin J. (EDF - Inria)

July 6, 2017 11 / 13

Paulin J. (EDF - Inria)

• What efficiency in Demand Response ?

- What efficiency in Demand Response ?
- Which results out of polynomials ?

- What efficiency in Demand Response ?
- Which results out of polynomials ?

- What efficiency in Demand Response ?
- Which results out of polynomials ?

In practice ?

• Coordination Signal/ Energy Consumption Scheduler (ECS) or Dynamic Pricing

- What efficiency in Demand Response ?
- Which results out of polynomials ?

- Coordination Signal/ Energy Consumption Scheduler (ECS) or Dynamic Pricing
 - \rightarrow which payoff for consumers ?

- What efficiency in Demand Response ?
- Which results out of polynomials ?

- Coordination Signal/ Energy Consumption Scheduler (ECS) or Dynamic Pricing
 - \rightarrow which payoff for consumers ?
- Online / Offline version (Day-Ahead)

- What efficiency in Demand Response ?
- Which results out of polynomials ?

- Coordination Signal/ Energy Consumption Scheduler (ECS) or Dynamic Pricing
 - \rightarrow which payoff for consumers ?
- Online / Offline version (Day-Ahead)
 - ullet ightarrow Robustness against unplanned customers events (stochasticity) ,

- What efficiency in Demand Response ?
- Which results out of polynomials ?

- Coordination Signal/ Energy Consumption Scheduler (ECS) or Dynamic Pricing
 - \rightarrow which payoff for consumers ?
- Online / Offline version (Day-Ahead)
 - $\bullet \ \rightarrow$ Robustness against unplanned customers events (stochasticity) ,
 - $\bullet\,\,\rightarrow\,$ Fast Convergence and Computation of the equilibrium

- What efficiency in Demand Response ?
- Which results out of polynomials ?

- Coordination Signal/ Energy Consumption Scheduler (ECS) or Dynamic Pricing
 - \rightarrow which payoff for consumers ?
- Online / Offline version (Day-Ahead)
 - $\bullet \ \rightarrow$ Robustness against unplanned customers events (stochasticity) ,
 - $\bullet\,\,\to\,$ Fast Convergence and Computation of the equilibrium

THANK YOU!

- J., P., Beaude, O., Gaubert, S., and Oudjane, N. (2017). Demand side management in the smart grid: an efficiency and fairness tradeoff (accepted). In *Innovative Smart Grid Technologies (ISGT), 2017 IEEE PES*. IEEE.
- [2] Orda, A., Rom, R., and Shimkin, N. (1993). Competitive routing in multiuser communication networks. *IEEE/ACM Transactions on Networking (ToN)*, 1(5):510–521.
- [3] Roughgarden, T. and Schoppmann, F. (2015). Local smoothness and the price of anarchy in splittable congestion games. *Journal of Economic Theory*, 156:317–342.