Efficiency of Game-Theoretic Energy Consumption in the Smart Grid

P. Jacquot ${ }^{1,2} \quad$ O.Beaude ${ }^{1} \quad$ S. Gaubert ${ }^{2} \quad$ N.Oudjane ${ }^{1}$

${ }^{1}$ EDF Lab
${ }^{2}$ Inria and CMAP, École Polytechnique

July 6, 2017

SING13

Paris Dauphine University

Introduction: Cost of Flexible Consumption

Cost of flexible load:

$$
C_{t}\left(\ell^{t}\right):=\bar{C}_{t}\left(L^{t}+\ell^{t}\right)-\bar{C}_{t}\left(L^{t}\right) .
$$

Model of Autonomous Network

- Set of discrete time periods \mathcal{T} (finite horizon)

Model of Autonomous Network

- Set of discrete time periods \mathcal{T} (finite horizon) \rightarrow for each time, production cost $C_{t}\left(\ell_{t}\right)$ (increasing and convex function of total load).

Model of Autonomous Network

- Set of discrete time periods \mathcal{T} (finite horizon) \rightarrow for each time, production cost $C_{t}\left(\ell_{t}\right)$ (increasing and convex function of total load).

Model of Autonomous Network

- Set of discrete time periods \mathcal{T} (finite horizon)
\rightarrow for each time, production cost $C_{t}\left(\ell_{t}\right)$
(increasing and convex function of total load).

- One distributor/aggregator d provides a set \mathcal{N} of N residential consumers

Model of Autonomous Network

- Set of discrete time periods \mathcal{T} (finite horizon)
\rightarrow for each time, production cost $C_{t}\left(\ell_{t}\right)$
(increasing and convex function of total load).

- One distributor/aggregator d provides a set \mathcal{N} of N residential consumers
- Consumers send their desired consumption profiles $\left(\ell_{n}^{t}\right)_{t}$,

Model of Autonomous Network

- Set of discrete time periods \mathcal{T} (finite horizon)
\rightarrow for each time, production cost $C_{t}\left(\ell_{t}\right)$
(increasing and convex function of total load).

- One distributor/aggregator d provides a set \mathcal{N} of N residential consumers
- Consumers send their desired consumption profiles $\left(\ell_{n}^{t}\right)_{t}$,
- Aggregator broadcast costs and aggregated load $\left(\ell^{t}\right)_{t}$,

Model of Autonomous Network

- Set of discrete time periods \mathcal{T} (finite horizon)
\rightarrow for each time, production cost $C_{t}\left(\ell_{t}\right)$
(increasing and convex function of total load).

- One distributor/aggregator d provides a set \mathcal{N} of N residential consumers
- Consumers send their desired consumption profiles $\left(\ell_{n}^{t}\right)_{t}$,
- Aggregator broadcast costs and aggregated load $\left(\ell^{t}\right)_{t}$,
- Consumers eventually reach an equilibrium.

Electricity Consumption Game: the model

Electricity Consumption Game: the model

$$
\begin{align*}
& \sum_{t \in \mathcal{T}} \ell_{n}^{t}=E_{n}, \tag{1b}\\
& \underline{\ell}_{n}^{t} \leq \ell_{n}^{t} \leq \bar{\ell}_{n}^{t}, \forall t \in \mathcal{T} . \tag{1c}
\end{align*}
$$

Electricity Consumption Game: the model

$$
\begin{array}{cl}
\min _{\ell_{n} \in \mathbb{R}^{T}} & b_{n}\left(\ell_{n}, \ell_{-n}\right) \\
\text { s.t. } & \sum_{t \in \mathcal{T}} \ell_{n}^{t}=E_{n}, \\
& \underline{\ell}_{n}^{t} \leq \ell_{n}^{t} \leq \bar{\ell}_{n}^{t}, \forall t \in \mathcal{T} . \tag{1c}
\end{array}
$$

Electricity Consumption Game: the model

$$
\begin{array}{cl}
\min _{\ell_{n} \in \mathbb{R}^{T}} & b_{n}\left(\ell_{n}, \ell_{-n}\right) \\
\text { s.t. } & \sum_{t \in \mathcal{T}} \ell_{n}^{t}=E_{n}, \\
& \underline{\ell}_{n}^{t} \leq \ell_{n}^{t} \leq \bar{\ell}_{n}^{t}, \forall t \in \mathcal{T} . \tag{1c}
\end{array}
$$

where b_{n} is the dynamic price for user n (bill), taken as:

Electricity Consumption Game: the model

$$
\begin{array}{cl}
\min _{\ell_{n} \in \mathbb{R}^{T}} & b_{n}\left(\ell_{n}, \ell_{-n}\right) \\
\text { s.t. } & \sum_{t \in \mathcal{T}} \ell_{n}^{t}=E_{n}, \\
& \underline{\ell}_{n}^{t} \leq \ell_{n}^{t} \leq \bar{\ell}_{n}^{t}, \forall t \in \mathcal{T} . \tag{1c}
\end{array}
$$

where b_{n} is the dynamic price for user n (bill), taken as:

Definition (Daily Prop.)

$$
b_{n}^{\mathrm{DP}}(\ell)=\frac{E_{n}}{\sum_{m} E_{m}} \sum_{t \in \mathcal{T}} C_{t}\left(\ell^{t}\right)
$$

Electricity Consumption Game: the model

$$
\begin{array}{cl}
\min _{\ell_{n} \in \mathbb{R}^{T}} & b_{n}\left(\ell_{n}, \ell_{-n}\right) \\
\text { s.t. } & \sum_{t \in \mathcal{T}} \ell_{n}^{t}=E_{n}, \\
& \underline{\ell}_{n}^{t} \leq \ell_{n}^{t} \leq \bar{\ell}_{n}^{t}, \forall t \in \mathcal{T} . \tag{1c}
\end{array}
$$

where b_{n} is the dynamic price for user n (bill), taken as:

Definition (Daily Prop.)

$$
b_{n}^{\mathrm{DP}}(\ell)=\frac{E_{n}}{\sum_{m} E_{m}} \sum_{t \in \mathcal{T}} C_{t}\left(\ell^{t}\right)
$$

weighted potential game

Electricity Consumption Game: the model

$$
\begin{array}{cl}
\min _{\ell_{n} \in \mathbb{R}^{T}} & b_{n}\left(\ell_{n}, \ell_{-n}\right) \\
\text { s.t. } & \sum_{t \in \mathcal{T}} \ell_{n}^{t}=E_{n} \\
& \underline{\ell}_{n}^{t} \leq \ell_{n}^{t} \leq \bar{\ell}_{n}^{t}, \forall t \in \mathcal{T} . \tag{1c}
\end{array}
$$

where b_{n} is the dynamic price for user n (bill), taken as:

Definition (Daily Prop.)

$$
b_{n}^{\mathrm{DP}}(\ell)=\frac{E_{n}}{\sum_{m} E_{m}} \sum_{t \in \mathcal{T}} C_{t}\left(\ell^{t}\right)
$$

Definition (Hourly Prop.)

$$
b_{n}^{\mathrm{HP}}(\ell)=\sum_{t \in \mathcal{T}} \frac{\ell_{n}^{t}}{\ell^{t}} C_{t}\left(\ell^{t}\right)
$$

weighted potential game
$\rightarrow \mathrm{N}$-person minimization game $\mathcal{G}:=\left(\mathcal{N}, \mathcal{L},\left(b_{n}\right)_{n}\right)$

Electricity Consumption Game: the model

$$
\begin{array}{cl}
\min _{\ell_{n} \in \mathbb{R}^{T}} & b_{n}\left(\ell_{n}, \ell_{-n}\right) \\
\text { s.t. } & \sum_{t \in \mathcal{T}} \ell_{n}^{t}=E_{n} \\
& \underline{\ell}_{n}^{t} \leq \ell_{n}^{t} \leq \bar{\ell}_{n}^{t}, \forall t \in \mathcal{T} . \tag{1c}
\end{array}
$$

where b_{n} is the dynamic price for user n (bill), taken as:

Definition (Daily Prop.)

$$
b_{n}^{\mathrm{DP}}(\ell)=\frac{E_{n}}{\sum_{m} E_{m}} \sum_{t \in \mathcal{T}} C_{t}\left(\ell^{t}\right)
$$

Definition (Hourly Prop.)

$$
b_{n}^{\mathrm{HP}}(\ell)=\sum_{t \in \mathcal{T}} \frac{\ell_{n}^{t}}{\ell^{t}} C_{t}\left(\ell^{t}\right)
$$

weighted potential game
$\rightarrow \mathrm{N}$-person minimization game $\mathcal{G}:=\left(\mathcal{N}, \mathcal{L},\left(b_{n}\right)_{n}\right)$

Electricity Consumption Game: the model

$$
\begin{array}{cl}
\min _{\ell_{n} \in \mathbb{R}^{T}} & b_{n}\left(\ell_{n}, \ell_{-n}\right) \\
\text { s.t. } & \sum_{t \in \mathcal{T}} \ell_{n}^{t}=E_{n} \\
& \underline{\ell}_{n}^{t} \leq \ell_{n}^{t} \leq \bar{\ell}_{n}^{t}, \forall t \in \mathcal{T} \tag{1c}
\end{array}
$$

where b_{n} is the dynamic price for user n (bill), taken as:

Definition (Daily Prop.)

$$
b_{n}^{\mathrm{DP}}(\ell)=\frac{E_{n}}{\sum_{m} E_{m}} \sum_{t \in \mathcal{T}} C_{t}\left(\ell^{t}\right)
$$

weighted potential game

$$
b_{n}^{\mathrm{HP}}(\ell)=\sum_{t \in \mathcal{T}} \frac{\ell_{n}^{t}}{\ell^{t}} C_{t}\left(\ell^{t}\right)
$$

"class B" routing game of Orda et al.
$\rightarrow \mathrm{N}$-person minimization game $\mathcal{G}:=\left(\mathcal{N}, \mathcal{L},\left(b_{n}\right)_{n}\right)$

Daily Proportional Billing $b_{n}^{\mathrm{DP}}(\ell)=\frac{E_{n}}{\sum_{m} E_{m}} \sum_{t \in \mathcal{T}} C_{t}\left(\ell^{t}\right)$

- each player minimizes $\operatorname{SC}(\ell)$

Daily Proportional Billing $b_{n}^{D P}(\ell)=\frac{E_{n}}{\sum_{m} E_{m}} \sum_{t \in \mathcal{T}} C_{t}\left(\ell^{t}\right)$

- each player minimizes $\operatorname{SC}(\ell)$
- unique Nash Equilibrium, minimum of convex SC,

Daily Proportional Billing $b_{n}^{D P}(\ell)=\frac{E_{n}}{\sum_{m} E_{m}} \sum_{t \in \mathcal{T}} C_{t}\left(\ell^{t}\right)$

- each player minimizes $\operatorname{SC}(\ell)$
- unique Nash Equilibrium, minimum of convex SC,
- however, this cost-sharing method is unfair to users:

Daily Proportional Billing $b_{n}^{\mathrm{DP}}(\ell)=\frac{E_{n}}{\sum_{m} E_{m}} \sum_{t \in \mathcal{T}} C_{t}\left(\ell^{t}\right)$

- each player minimizes $\operatorname{SC}(\ell)$
- unique Nash Equilibrium, minimum of convex SC,
- however, this cost-sharing method is unfair to users:

Example:

- $\mathcal{T}=\{$ Peak, Offpeak $\}, \mathcal{N}=\{1,2\}, \quad E_{1}=10, E_{2}=10$.

Daily Proportional Billing $b_{n}^{\mathrm{DP}}(\ell)=\frac{E_{n}}{\sum_{m} E_{m}} \sum_{t \in \mathcal{T}} C_{t}\left(\ell^{t}\right)$

- each player minimizes $\operatorname{SC}(\ell)$
- unique Nash Equilibrium, minimum of convex SC,
- however, this cost-sharing method is unfair to users:

Example:

- $\mathcal{T}=\{$ Peak, Offpeak $\}, \mathcal{N}=\{1,2\}, \quad E_{1}=10, E_{2}=10$.
- Costs $C_{P}=\ell^{2}, C_{O}=\varepsilon$,

Daily Proportional Billing $b_{n}^{\mathrm{DP}}(\ell)=\frac{E_{n}}{\sum_{m} E_{m}} \sum_{t \in \mathcal{T}} C_{t}\left(\ell^{t}\right)$

- each player minimizes $\operatorname{SC}(\ell)$
- unique Nash Equilibrium, minimum of convex SC,
- however, this cost-sharing method is unfair to users:

Example:

- $\mathcal{T}=\{$ Peak, Offpeak $\}, \mathcal{N}=\{1,2\}, \quad E_{1}=10, E_{2}=10$.
- Costs $C_{P}=\ell^{2}, C_{O}=\varepsilon$,
- " p_{1} ": "I make an effort, I can consume on Offpeak": $\ell_{O}^{1}=E_{1}$

Daily Proportional Billing $b_{n}^{\mathrm{DP}}(\ell)=\frac{E_{n}}{\sum_{m} E_{m}} \sum_{t \in \mathcal{T}} C_{t}\left(\ell^{t}\right)$

- each player minimizes $\operatorname{SC}(\ell)$
- unique Nash Equilibrium, minimum of convex SC,
- however, this cost-sharing method is unfair to users:

Example:

- $\mathcal{T}=\{$ Peak, Offpeak $\}, \mathcal{N}=\{1,2\}, \quad E_{1}=10, E_{2}=10$.
- Costs $C_{P}=\ell^{2}, C_{O}=\varepsilon$,
- " p_{1} ": "I make an effort, I can consume on Offpeak": $\ell_{O}^{1}=E_{1}$
- " p_{2} ": "I don't want to make an effort, I load on Peak: $\ell_{P}^{2}=E_{2}$

Daily Proportional Billing $b_{n}^{D P}(\ell)=\frac{E_{n}}{\sum_{m} E_{m}} \sum_{t \in \mathcal{T}} C_{t}\left(\ell^{t}\right)$

- each player minimizes $\operatorname{SC}(\ell)$
- unique Nash Equilibrium, minimum of convex SC,
- however, this cost-sharing method is unfair to users:

Example:

- $\mathcal{T}=\{$ Peak, Offpeak $\}, \mathcal{N}=\{1,2\}, \quad E_{1}=10, E_{2}=10$.
- Costs $C_{P}=\ell^{2}, C_{O}=\varepsilon$,
- " p_{1} ": "I make an effort, I can consume on Offpeak": $\ell_{O}^{1}=E_{1}$
- " p_{2} ": "I don't want to make an effort, I load on Peak: $\ell_{P}^{2}=E_{2}$
- $b_{1}=\frac{1}{2}(\varepsilon+100), b_{2}=\frac{1}{2}(\varepsilon+100)$

Daily Proportional Billing $b_{n}^{D P}(\ell)=\frac{E_{n}}{\sum_{m} E_{m}} \sum_{t \in \mathcal{T}} C_{t}\left(\ell^{t}\right)$

- each player minimizes $\operatorname{SC}(\ell)$
- unique Nash Equilibrium, minimum of convex SC,
- however, this cost-sharing method is unfair to users:

Example:

- $\mathcal{T}=\{$ Peak, Offpeak $\}, \mathcal{N}=\{1,2\}, \quad E_{1}=10, E_{2}=10$.
- Costs $C_{P}=\ell^{2}, C_{O}=\varepsilon$,
- " p_{1} ": "I make an effort, I can consume on Offpeak": $\ell_{O}^{1}=E_{1}$
- " p_{2} ": "I don't want to make an effort, I load on Peak: $\ell_{P}^{2}=E_{2}$
- $b_{1}=\frac{1}{2}(\varepsilon+100), b_{2}=\frac{1}{2}(\varepsilon+100)$
p_{2} is responsible for all the costs, but p_{1} pays the same price!

Daily Proportional Billing $b_{n}^{\mathrm{DP}}(\ell)=\frac{E_{n}}{\sum_{m} E_{m}} \sum_{t \in \mathcal{T}} C_{t}\left(\ell^{t}\right)$

- each player minimizes $\operatorname{SC}(\ell)$
- unique Nash Equilibrium, minimum of convex SC,
- however, this cost-sharing method is unfair to users:

Example:

- $\mathcal{T}=\{$ Peak, Offpeak $\}, \mathcal{N}=\{1,2\}, \quad E_{1}=10, E_{2}=10$.
- Costs $C_{P}=\ell^{2}, C_{O}=\varepsilon$,
- " p_{1} ": "I make an effort, I can consume on Offpeak": $\ell_{O}^{1}=E_{1}$
- " p_{2} ": "I don't want to make an effort, I load on Peak: $\ell_{P}^{2}=E_{2}$
- $b_{1}=\frac{1}{2}(\varepsilon+100), b_{2}=\frac{1}{2}(\varepsilon+100)$
p_{2} is responsible for all the costs, but p_{1} pays the same price!
\rightarrow The HP billing will be fairer to users.

Measuring Efficiency: the Price of Anarchy

Nash Equilibrium (NE)
$\left(\ell_{n}\right)_{n}$ is a NE IFF for all n :
$\forall \ell_{n}^{\prime} \in \mathcal{L}_{n}, b_{n}\left(\ell_{n}, \ell_{-n}\right) \leq b_{n}\left(\ell_{n}^{\prime}, \ell_{-n}\right)$

Measuring Efficiency: the Price of Anarchy

Nash Equilibrium (NE)
$\left(\ell_{n}\right)_{n}$ is a NE IFF for all n :
$\forall \ell_{n}^{\prime} \in \mathcal{L}_{n}, b_{n}\left(\ell_{n}, \ell_{-n}\right) \leq b_{n}\left(\ell_{n}^{\prime}, \ell_{-n}\right)$

Social Optimum (SO)
$\left(\ell_{n}^{*}\right)_{n}$ is a SO IFF:

$$
\left(\ell_{n}^{*}\right)_{n}=\underset{\ell \in \mathcal{L}}{\operatorname{argmin}} \sum_{n} b_{n}(\ell)
$$

Measuring Efficiency: the Price of Anarchy

Nash Equilibrium (NE) $\left(\ell_{n}\right)_{n}$ is a NE IFF for all n :
$\forall \ell_{n}^{\prime} \in \mathcal{L}_{n}, b_{n}\left(\ell_{n}, \ell_{-n}\right) \leq b_{n}\left(\ell_{n}^{\prime}, \ell_{-n}\right)$

Social Optimum (SO)
$\left(\ell_{n}^{*}\right)_{n}$ is a SO IFF:

$$
\left(\ell_{n}^{*}\right)_{n}=\underset{\ell \in \mathcal{L}}{\operatorname{argmin}} \sum_{n} b_{n}(\ell)
$$

Definition (Price of Anarchy)

$$
\operatorname{PoA}(\mathcal{G}):=\frac{\sup _{\ell \in \mathcal{X}_{\mathcal{G}}^{\mathrm{NE}}} \operatorname{SC}(\ell)}{\operatorname{SC}\left(\ell^{*}\right)}
$$

where $\operatorname{SC}()=.\sum_{n} b_{n}($.$) is the social cost.$

Measuring Efficiency: the Price of Anarchy

Nash Equilibrium (NE) $\left(\ell_{n}\right)_{n}$ is a NE IFF for all n :
$\forall \ell_{n}^{\prime} \in \mathcal{L}_{n}, b_{n}\left(\ell_{n}, \ell_{-n}\right) \leq b_{n}\left(\ell_{n}^{\prime}, \ell_{-n}\right)$

Social Optimum (SO)
$\left(\ell_{n}^{*}\right)_{n}$ is a SO IFF:
$\left(\ell_{n}^{*}\right)_{n}=\underset{\ell \in \mathcal{L}}{\operatorname{argmin}} \sum_{n} b_{n}(\ell)$

Definition (Price of Anarchy)

$$
\operatorname{PoA}(\mathcal{G}):=\frac{\sup _{\ell \in \mathcal{X}_{\mathcal{G}}^{\mathrm{NE}}} \operatorname{SC}(\ell)}{\operatorname{SC}\left(\ell^{*}\right)}
$$

where $\operatorname{SC}()=.\sum_{n} b_{n}($.$) is the social cost.$
What is the maximal PoA with $b_{n}^{\mathrm{HP}}(\ell)=\sum_{t \in \mathcal{T}} \frac{\ell_{n}^{t}}{\ell^{t}} C_{t}\left(\ell^{t}\right)$

Measuring Efficiency: the Price of Anarchy

Nash Equilibrium (NE) $\left(\ell_{n}\right)_{n}$ is a NE IFF for all n :
$\forall \ell_{n}^{\prime} \in \mathcal{L}_{n}, b_{n}\left(\ell_{n}, \ell_{-n}\right) \leq b_{n}\left(\ell_{n}^{\prime}, \ell_{-n}\right)$

Social Optimum (SO)
$\left(\ell_{n}^{*}\right)_{n}$ is a SO IFF:
$\left(\ell_{n}^{*}\right)_{n}=\underset{\ell \in \mathcal{L}}{\operatorname{argmin}} \sum_{n} b_{n}(\ell)$

Definition (Price of Anarchy)

$$
\operatorname{PoA}(\mathcal{G}):=\frac{\sup _{\ell \in \mathcal{X}_{\mathcal{G}}^{\mathrm{NE}}} \operatorname{SC}(\ell)}{\operatorname{SC}\left(\ell^{*}\right)}
$$

where $\operatorname{SC}()=.\sum_{n} b_{n}($.$) is the social cost.$
What is the maximal PoA with $b_{n}^{\mathrm{HP}}(\ell)=\sum_{t \in \mathcal{T}} \frac{\ell_{n}^{t}}{\ell^{t}} C_{t}\left(\ell^{t}\right)$ $b_{n}^{\mathrm{HP}}(\ell)=\sum_{t} \ell_{n}^{t} c_{t}\left(\ell^{t}\right)$
with $c_{t}\left(\ell^{t}\right)=\frac{C_{t}\left(\ell^{t}\right)}{\ell^{t}}$.

Measuring Efficiency: the Price of Anarchy

Nash Equilibrium (NE) $\left(\ell_{n}\right)_{n}$ is a NE IFF for all n :
$\forall \ell_{n}^{\prime} \in \mathcal{L}_{n}, b_{n}\left(\ell_{n}, \ell_{-n}\right) \leq b_{n}\left(\ell_{n}^{\prime}, \ell_{-n}\right)$

Social Optimum (SO)
$\left(\ell_{n}^{*}\right)_{n}$ is a SO IFF:

$$
\left(\ell_{n}^{*}\right)_{n}=\underset{\ell \in \mathcal{L}}{\operatorname{argmin}} \sum_{n} b_{n}(\ell)
$$

Definition (Price of Anarchy)

$$
\operatorname{PoA}(\mathcal{G}):=\frac{\sup _{\ell \in \mathcal{X}_{\mathcal{G}}^{\mathrm{NE}}} \operatorname{SC}(\ell)}{\operatorname{SC}\left(\ell^{*}\right)},
$$

where $\operatorname{SC}()=.\sum_{n} b_{n}($.$) is the social cost. \quad t=1, C_{1}\left(\ell^{1}\right) / \ell^{1}$
What is the maximal PoA with $b_{n}^{\mathrm{HP}}(\ell)=\sum_{t \in \mathcal{T}} \frac{\ell_{n}^{t}}{\ell^{t}} C_{t}\left(\ell^{t}\right)$ $b_{n}^{\mathrm{HP}}(\ell)=\sum_{t} \ell_{n}^{t} c_{t}\left(\ell^{t}\right)$
with $c_{t}\left(\ell^{t}\right)=\frac{c_{t}\left(\ell^{t}\right)}{\ell^{t}}$.

PoA in atomic splittable games can be arbitrarily large!

- Assume there are N players with same demand $E_{n}=1$,

PoA in atomic splittable games can be arbitrarily large!

- Assume there are N players with same demand $E_{n}=1$,
- Cost of player $n: b_{n}=x_{n}\left(\frac{x}{N}\right)^{p}+\left(E_{n}-x_{n}\right) \times 1$,

PoA in atomic splittable games can be arbitrarily large!

- Assume there are N players with same demand $E_{n}=1$,
- Cost of player $n: b_{n}=x_{n}\left(\frac{x}{N}\right)^{p}+\left(E_{n}-x_{n}\right) \times 1$,
- NE: $\hat{x}=N\left(1+\frac{p}{N}\right)^{-1 / p}, \mathrm{SO}: x^{*}=N(1+p)^{-1 / p}$,

PoA in atomic splittable games can be arbitrarily large!

- Assume there are N players with same demand $E_{n}=1$,
- Cost of player $n: b_{n}=x_{n}\left(\frac{x}{N}\right)^{p}+\left(E_{n}-x_{n}\right) \times 1$,
- NE: $\hat{x}=N\left(1+\frac{p}{N}\right)^{-1 / p}$, SO: $x^{*}=N(1+p)^{-1 / p}$,
- $\frac{\operatorname{SC}(\hat{x})}{N}=\left(1+\frac{p}{N}\right)^{(-1+1 / p)}+1-\left(1+\frac{p}{N}\right)^{-1 / p} \underset{N \rightarrow \infty}{\longrightarrow} 1$

PoA in atomic splittable games can be arbitrarily large!

- Assume there are N players with same demand $E_{n}=1$,
- Cost of player $n: b_{n}=x_{n}\left(\frac{x}{N}\right)^{p}+\left(E_{n}-x_{n}\right) \times 1$,
- NE: $\hat{x}=N\left(1+\frac{p}{N}\right)^{-1 / p}$, SO: $x^{*}=N(1+p)^{-1 / p}$,
- $\frac{\operatorname{SC}(\hat{x})}{N}=\left(1+\frac{p}{N}\right)^{(-1+1 / p)}+1-\left(1+\frac{p}{N}\right)^{-1 / p} \underset{N \rightarrow \infty}{\longrightarrow} 1$
- $\frac{\operatorname{sC}\left(\ell^{*}\right)}{N}=(1+p)^{(-1+1 / p)}+1-(1+p)^{-1 / p} \underset{p \rightarrow \infty}{\longrightarrow} 0$

General Bound with Local Smoothness

Definition (Roughgarden and Schoppmann, 2015)

Local Smoothness.

A cost minimization game is locally (λ, μ)-smooth with respect to y iff for all admissible outcome x :

$$
\sum_{n=1}^{N} b_{n}\left(x_{n}, x_{-n}\right)+\nabla_{x_{n}} b_{n}(x)^{T}\left(y_{n}-x_{n}\right) \leq \lambda \operatorname{SC}(y)+\mu \mathrm{SC}(x)
$$

General Bound with Local Smoothness

Definition (Roughgarden and Schoppmann, 2015)

Local Smoothness.

A cost minimization game is locally (λ, μ)-smooth with respect to y iff for all admissible outcome x :

$$
\sum_{n=1}^{N} b_{n}\left(x_{n}, x_{-n}\right)+\nabla_{x_{n}} b_{n}(x)^{T}\left(y_{n}-x_{n}\right) \leq \lambda \operatorname{SC}(y)+\mu \operatorname{SC}(x)
$$

Theorem (Roughgarden and Schoppmann, 2015)

If costs functions are polynomials with positive coefficients of degree $\leq d$, then $\mathrm{PoA} \leq \frac{3}{2}$ for $d=1$ and $\mathrm{PoA} \leq\left(\frac{1+\sqrt{d+1}}{2}\right)^{d+1}$ for $d \geq 2$.

Specific Functions: a better bound ?

Theorem (J. et al., 2017)
Assume linear prices on the arcs:

$$
c_{t}(\ell)=\alpha_{t}^{t}+\beta_{t} \ell \quad\left(=\frac{C_{t}(\ell)}{\ell}\right)
$$

Specific Functions: a better bound ?

Theorem (J. et al., 2017)
Assume linear prices on the arcs:

$$
c_{t}(\ell)=\alpha_{t}^{t}+\beta_{t} \ell \quad\left(=\frac{C_{t}(\ell)}{\ell}\right)
$$

Then the PoA is upper bounded:

$$
\begin{aligned}
\operatorname{PoA} & \leq \rho^{S L}=\frac{1}{2}\left(1+\sqrt{1+\frac{1}{(1+r)^{2}}}+\frac{1}{2(1+r)}\right) \\
& \leq 1+\frac{3}{4} \frac{1}{1+r}
\end{aligned}
$$

where $r=\inf _{t \in \mathcal{T}} \alpha^{t} /\left(\beta_{t} \bar{\ell}^{t}\right)$.

Gap with Simulations

Computation with Linear Prices and "Interior Equilibrium"

- Assume linear prices: for all $t \in \mathcal{T}, c_{t}\left(\ell^{t}\right)=\alpha_{t}+\beta_{t} \ell^{t}$.

Computation with Linear Prices and "Interior Equilibrium"

- Assume linear prices: for all $t \in \mathcal{T}, c_{t}\left(\ell^{t}\right)=\alpha_{t}+\beta_{t} \ell^{t}$.
- "Interior Equilibrium": for all $n \in \mathcal{N}$, for all $t, \ell_{n}^{t}>0$, then:

Computation with Linear Prices and "Interior Equilibrium"

- Assume linear prices: for all $t \in \mathcal{T}, c_{t}\left(\ell^{t}\right)=\alpha_{t}+\beta_{t} \ell^{t}$.
- "Interior Equilibrium": for all $n \in \mathcal{N}$, for all $t, \ell_{n}^{t}>0$, then:

Nash Equilibrium (NE): $\hat{\ell}_{n}^{h}$

$$
\frac{1}{\sum_{k \in \mathcal{H}} \frac{\beta_{h}}{\beta_{k}}}\left[\frac{1}{N+1}\left(\sum_{k \in \mathcal{H} \backslash\{h\}} \frac{\alpha_{k}-\alpha_{h}}{\beta_{k}}\right)+E_{n}\right]
$$

Computation with Linear Prices and "Interior Equilibrium"

- Assume linear prices: for all $t \in \mathcal{T}, c_{t}\left(\ell^{t}\right)=\alpha_{t}+\beta_{t} \ell^{t}$.
- "Interior Equilibrium" : for all $n \in \mathcal{N}$, for all $t, \ell_{n}^{t}>0$, then:

Nash Equilibrium (NE): $\hat{\ell}_{n}^{h}$
$\frac{1}{\sum_{k \in \mathcal{H}} \frac{\beta_{h}}{\beta_{k}}}\left[\frac{1}{N+1}\left(\sum_{k \in \mathcal{H} \backslash\{h\}} \frac{\alpha_{k}-\alpha_{h}}{\beta_{k}}\right)+E_{n}\right]$

Social Optimum (SO): ℓ_{h}^{*}

$$
\frac{1}{\sum_{k \in \mathcal{H}} \frac{\beta_{h}}{\beta_{k}}}\left[\frac{1}{2}\left(\sum_{k \in \mathcal{H} \backslash\{h\}} \frac{\alpha_{k}-\alpha_{h}}{\beta_{k}}\right)+E\right]
$$

Computation with Linear Prices and "Interior Equilibrium"

- Assume linear prices: for all $t \in \mathcal{T}, c_{t}\left(\ell^{t}\right)=\alpha_{t}+\beta_{t} \ell^{t}$.
- "Interior Equilibrium" : for all $n \in \mathcal{N}$, for all $t, \ell_{n}^{t}>0$, then:

Nash Equilibrium (NE): $\hat{\ell}_{n}^{h}$

$$
\frac{1}{\sum_{k \in \mathcal{H}} \frac{\beta_{h}}{\beta_{k}}}\left[\frac{1}{N+1}\left(\sum_{k \in \mathcal{H} \backslash\{h\}} \frac{\alpha_{k}-\alpha_{h}}{\beta_{k}}\right)+E_{n}\right]
$$

Social Optimum (SO): ℓ_{h}^{*}

$$
\frac{1}{\sum_{k \in \mathcal{H}} \frac{\beta_{h}}{\beta_{k}}}\left[\frac{1}{2}\left(\sum_{k \in \mathcal{H} \backslash\{h\}} \frac{\alpha_{k}-\alpha_{h}}{\beta_{k}}\right)+E\right]
$$

Explicit price of Anarchy:

$$
\operatorname{PoA}=1+\frac{\left(1-\frac{4 N}{(N+1)^{2}}\right) V}{-V+8\left(\sum_{h} \frac{\alpha_{h}}{\beta_{h}} E+E^{2}\right)}
$$

where $V \stackrel{\text { def }}{=} \sum_{k, h \in \mathcal{H}^{2}} \frac{\left(\alpha_{k}-\alpha_{h}\right)^{2}}{\beta_{k} \beta_{h}}$.

Computation with Linear Prices and "Interior Equilibrium"

- Assume linear prices: for all $t \in \mathcal{T}, c_{t}\left(\ell^{t}\right)=\alpha_{t}+\beta_{t} \ell^{t}$.
- "Interior Equilibrium" : for all $n \in \mathcal{N}$, for all $t, \ell_{n}^{t}>0$, then:

Nash Equilibrium (NE): $\hat{\ell}_{n}^{h}$

$$
\frac{1}{\sum_{k \in \mathcal{H}} \frac{\beta_{h}}{\beta_{k}}}\left[\frac{1}{N+1}\left(\sum_{k \in \mathcal{H} \backslash\{h\}} \frac{\alpha_{k}-\alpha_{h}}{\beta_{k}}\right)+E_{n}\right]
$$

Social Optimum (SO): ℓ_{h}^{*}

$$
\frac{1}{\sum_{k \in \mathcal{H}} \frac{\beta_{h}}{\beta_{k}}}\left[\frac{1}{2}\left(\sum_{k \in \mathcal{H} \backslash\{h\}} \frac{\alpha_{k}-\alpha_{h}}{\beta_{k}}\right)+E\right]
$$

Explicit price of Anarchy:

$$
\mathrm{PoA}=1+\frac{\left(1-\frac{4 N}{(N+1)^{2}}\right) V}{-V+8\left(\sum_{h} \frac{\alpha_{h}}{\beta_{h}} N \bar{E}+N^{2} \bar{E}^{2}\right)}
$$

where $V \stackrel{\text { def }}{=} \sum_{k, h \in \mathcal{H}^{2}} \frac{\left(\alpha_{k}-\alpha_{h}\right)^{2}}{\beta_{k} \beta_{h}}$.

Computation with Linear Prices and "Interior Equilibrium"

- Assume linear prices: for all $t \in \mathcal{T}, c_{t}\left(\ell^{t}\right)=\alpha_{t}+\beta_{t} \ell^{t}$.
- "Interior Equilibrium" : for all $n \in \mathcal{N}$, for all $t, \ell_{n}^{t}>0$, then:

Nash Equilibrium (NE): $\hat{\ell}_{n}^{h}$

$$
\frac{1}{\sum_{k \in \mathcal{H}} \frac{\beta_{h}}{\beta_{k}}}\left[\frac{1}{N+1}\left(\sum_{k \in \mathcal{H} \backslash\{h\}} \frac{\alpha_{k}-\alpha_{h}}{\beta_{k}}\right)+E_{n}\right]
$$

Social Optimum (SO): ℓ_{h}^{*}

$$
\frac{1}{\sum_{k \in \mathcal{H}} \frac{\beta_{h}}{\beta_{k}}}\left[\frac{1}{2}\left(\sum_{k \in \mathcal{H} \backslash\{h\}} \frac{\alpha_{k}-\alpha_{h}}{\beta_{k}}\right)+E\right]
$$

Explicit price of Anarchy:

$$
\operatorname{PoA}=1+\frac{\left(1-\frac{4 N}{(N+1)^{2}}\right) V}{-V+8\left(\sum_{h} \frac{\alpha_{h}}{\beta_{h}} N \bar{E}+N^{2} \bar{E}^{2}\right)} \underset{N \rightarrow \infty}{\longrightarrow} 1
$$

where $V \stackrel{\text { def }}{=} \sum_{k, h \in \mathcal{H}^{2}} \frac{\left(\alpha_{k}-\alpha_{h}\right)^{2}}{\beta_{k} \beta_{h}}$.

Conclusion and Perspectives

- What efficiency in Demand Response ?

Conclusion and Perspectives

- What efficiency in Demand Response ?
- Which results out of polynomials ?

Conclusion and Perspectives

- What efficiency in Demand Response ?
- Which results out of polynomials ?

In practice ?

Conclusion and Perspectives

- What efficiency in Demand Response ?
- Which results out of polynomials ?

In practice ?

- Coordination Signal/ Energy Consumption Scheduler (ECS) or Dynamic Pricing

Conclusion and Perspectives

- What efficiency in Demand Response ?
- Which results out of polynomials ?

In practice ?

- Coordination Signal/ Energy Consumption Scheduler (ECS) or Dynamic Pricing
- \rightarrow which payoff for consumers ?

Conclusion and Perspectives

- What efficiency in Demand Response ?
- Which results out of polynomials ?

In practice ?

- Coordination Signal/ Energy Consumption Scheduler (ECS) or Dynamic Pricing
- \rightarrow which payoff for consumers?
- Online / Offline version (Day-Ahead)

Conclusion and Perspectives

- What efficiency in Demand Response ?
- Which results out of polynomials ?

In practice ?

- Coordination Signal/ Energy Consumption Scheduler (ECS) or Dynamic Pricing
- \rightarrow which payoff for consumers?
- Online / Offline version (Day-Ahead)
- \rightarrow Robustness against unplanned customers events (stochasticity),

Conclusion and Perspectives

- What efficiency in Demand Response ?
- Which results out of polynomials ?

In practice ?

- Coordination Signal/ Energy Consumption Scheduler (ECS) or Dynamic Pricing
- \rightarrow which payoff for consumers ?
- Online / Offline version (Day-Ahead)
- \rightarrow Robustness against unplanned customers events (stochasticity),
- \rightarrow Fast Convergence and Computation of the equilibrium

Conclusion and Perspectives

- What efficiency in Demand Response ?
- Which results out of polynomials ?

In practice ?

- Coordination Signal/ Energy Consumption Scheduler (ECS) or Dynamic Pricing
- \rightarrow which payoff for consumers?
- Online / Offline version (Day-Ahead)
- \rightarrow Robustness against unplanned customers events (stochasticity),
- \rightarrow Fast Convergence and Computation of the equilibrium

THANK YOU!

References

[1] J., P., Beaude, O., Gaubert, S., and Oudjane, N. (2017). Demand side management in the smart grid: an efficiency and fairness tradeoff (accepted). In Innovative Smart Grid Technologies (ISGT), 2017 IEEE PES. IEEE.
[2] Orda, A., Rom, R., and Shimkin, N. (1993). Competitive routing in multiuser communication networks. IEEE/ACM Transactions on Networking (ToN), 1(5):510-521.
[3] Roughgarden, T. and Schoppmann, F. (2015). Local smoothness and the price of anarchy in splittable congestion games. Journal of Economic Theory, 156:317-342.

