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Hypothetical dispatch curve for summer 2011 _
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Cost of flexible load:

Co(0t) == Co(LE+01)—Co(LY).
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Introduction: Demand Response

@ One distributor/aggregator d
@ provides a set A/ of N

@ residential consumers

®
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Introduction: Demand Response

One distributor/aggregator d
provides a set A/ of N
residential consumers

®

@ Consumers send their desired
consumption profiles (¢);,

@ Aggregator broadcast costs and
aggregated load (¢');,

@ Consumers eventually reach an
equilibrium.
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Electricity Consumption Game: the model

[ bn enae—n ]_
Jmin, - bn( ) (1a)
st. Y lh=E, (1b)
teT

< <P vteT . (L)

where by, is the dynamic price for user n (bill), taken as:

Definition (Daily Prop.)

Definition (Hourly Prop. )

bDP Z Z Ct gt bHP Z Et Ct et

m et teT

— N-person minimization game G := (N, L, (by)n)
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Nash Equilibrium

— bp(£n,£_,) cost of consumer n

Definition

~

The profile (¢), is a Nash Equilibrium IFF for all player n, for all possible
admissible profile (strategy) £,:
bo(£n, £-n) < bn(£n, £-1)

— 0,= argminb,,(ﬂ,,,é_,,).
Ln€Lp
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Nash Equilibrium

— bp(£n,£_,) cost of consumer n

Definition

~

The profile (¢), is a Nash Equilibrium IFF for all player n, for all possible
admissible profile (strategy) £,:
bo(£n, £-n) < bn(£n, £-1)

— 0,= argminb,,(ﬂ,,,é_,,).
Ln€Lp

Remark: Existence and Uniqueness are not general!
Depends on the structure of b,'s...
Equilibrium <= no one has any interest to change!
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Compute NE in Demand Response

We want an algorithm to compute the equilibrium profile:

© decentralized: for privacy reasons and dimension of the global
problem,
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Compute NE in Demand Response

We want an algorithm to compute the equilibrium profile:

© decentralized: for privacy reasons and dimension of the global
problem,

@ asynchronous: it would not be possible to synchronize efficiently if
local optimizations are performed,

© fast: the equilibrium may have to be recomputed.
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Cyclic Best Response Dynamics

input: A starting (load) strategy (KS,O)),,GN € X of the agents
Set k =0.
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Convergence with DP billing

Every user solves

. Ej "
et E Z C(£)
teT
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Convergence with DP billing

Every user solves

. Ey .
min ;Ct(ﬁt) < min ZCt(Zt)

Lel, E
t

Alternate Minimization :

Theorem (Hong et al., 2017)

Alternate minimization on convex function f over N blocks converges
linearly. Precisely, after r cycles:

1
(NY _ mi < 2=
f(x\") )I;Tél;f(x)_ KN o
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Convergence with DP billing

Every user solves

. Ey .
min ;Ct(ﬁt) < min ZCt(Zt)

Lel, E
t

Alternate Minimization :

Theorem (Hong et al., 2017)

Alternate minimization on convex function f over N blocks converges
linearly. Precisely, after r cycles:

1
(NY _ mi < 2=
f(x\") )I;Tél;f(x)_ KN o

. 2 .
= Approximated ¢, = %E"@ Nash Eq. in r cycles.
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Convergence with HP billing

DP billing: each user solves

En t
et,nem,, = Z Ce (L)
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Convergence with HP billing

HP billing: each user solves

Theorem (Orda et al., 1993)

In a network of parallel arcs with cost functions (% — £t x c:(¢t), there
exists a unique equilibrium.
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Convergence with HP billing

HP billing: each user solves

: Uh ~ oot
oL, Z ﬁct(g )
teT

Theorem (Orda et al., 1993)

In a network of parallel arcs with cost functions (% — £t x c:(¢t), there
exists a unique equilibrium.

Proposition

| N\

The result extends to the constrained case (% < ¢t < (t (and where each
player has a subset of arcs).
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Convergence with HP billing (2)

In the case of quadratic costs C;(£t) = a:(£t)? + b.lt:
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Convergence with HP billing (2)

In the case of quadratic costs C;(£t) = a:(£t)? + b.lt:

nELn

min Zﬁf, x (arl" + bt)
t

in ®(¢
& min &(f)

where ®(€) =3, % [(¢1)% + 3, (¢5)?] + bel* is called a potential
function:

Vi, Ve, £y, £y bo(ln, £on) — bo(Ehy €)= D(Ln, ) — D(L), £_,)

= Vn, V&, V,bn(£) = V,(e) .
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Convergence with HP billing (end...

@ as before, alernate minimization on ¢
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Convergence with HP billing (end...)

@ as before, alernate minimization on ¢
@ the potential converges linearly to its minimum
@ however, the rate of convergence of profiles is not clear..

Some hope numerically:

— Agg. Norm 2
— Agg. Norm 1
— Disagg. Norm 1
—— Disagg. Norm 2

10°

101}

Variations Cycles [[(*+1) — (]|

107}

10~

Number Cycles.

Paulin J. (EDF - Inria) Demand Response - Decentralized June 30, 2017 1 /19



Convergence with HP billing (e

@ as before, alernate minimization on ¢
@ the potential converges linearly to its minimum

@ however, the rate of convergence of profiles is not clear..

Conjecture (Brun et al., 2013)

The non-linear spectral radius of CBRD operator:

Kk

A;
il

p(Tgr) = lim sup sup
k—o0 (A;);€J (Ter)

is < 1 in a network of parallel arcs.
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Convergence with HP billing (e

@ as before, alernate minimization on ¢
@ the potential converges linearly to its minimum

@ however, the rate of convergence of profiles is not clear..

Conjecture (Brun et al., 2013)

The non-linear spectral radius of CBRD operator:

Kk

A;
il

p(Tgr) = lim sup sup
k—o0 (A;);€J (Ter)

is < 1 in a network of parallel arcs.

Corrolary: the BRD converges with an exponential rate.
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Bounding Efficiency

With Demand Response, we reach an equilibrium profile...
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Bounding Efficiency

With Demand Response, we reach an equilibrium profile...

... but how far from the optimal profile is it ?
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Measuring Efficiency: the Price of Anarchy

Nasu EqQuiLiBRIUM (NE)
(€n)n is a NE IFF for all n:

Ve, € Ly, by(bn,—pn) < by(£),20-1)
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Measuring Efficiency: the Price of Anarchy

NasH EQuiLiBRIUM (NE) SociaL OpTiMUuM (SO)
(€,)n is a NE IFF for all n: (€x), is a SO IFF:

(€;)n = argmin Y by(4)
Ve € Ly, bp(€n,€_1) < ba(£,£_1) eL ;

Definition (Price of Anarchy)

Supge yne SC(£)
POA(G) := % :

where SC(.) = >, ba(.) is the social cost.
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Bounding the PoA

e with Daily billing bPP, every user minimizes %SC

= PoA=1
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. . o .« . . En
o with Daily billing , every user minimizes 2 5C

= PoA=1

o with Hourly billing bHP, the equilibrium is not optimal!
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Bounding the PoA

e with Daily billing bPP, every user minimizes %SC

= PoA=1

o with Hourly billing bHP, the equilibrium is not optimal!

Assume costs are quadratic:
Ce(0) = ale + abe? |

Then the PoA is upper
bounded:

1
PoA<1+sup—
her 1+ af/(a4")
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Bounding the PoA

e with Daily billing bPP, every user minimizes %SC

= PoA=1

o with Hourly billing bHP, the equilibrium is not optimal!

T h eorem s Evolution of POA with r ratio
Assume costs are quadratic:
s — POA bound local sm.

Ce(0) = ate + abe? |
g
Then the PoA is upper . _
bounded: n T
1 10 l¥—

PoA<1+sup—
her 1+ al/(247")

r=alh/ (a2h*Emax}

Paulin J. (EDF - Inria) Demand Response - Decentralized June 30, 2017 14 /19



With linear costs, if for all n and for all t , ¢}, > 0:

(- witte) v

POA:1+_V+8(Z/7%E+E2>

(2)

: def —ap)?
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(- witte) v

POA:1+_V+8(Z/7%E+E2>

(2)

: def —ap)?

@ Lower bound on the PoA...

@ ... but no upper bound!
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With linear costs, if for all n and for all t , ¢}, > 0:

(- witte) v

POA:1+_V+8(Z/7%E+E2>

(2)

. def —ap)?

@ Lower bound on the PoA...
@ ... but no upper bound!

@ Can we have some results in the nonlinear case ?
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User's preferences

Consumers might have a prefered consumption profile (¢);

— distance to this profile will be penalized.
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Assume user’s objective is now:
12
£ (bn, £-n) = (1= 0)ba(€) +a|[£ 2]

with a € [0, 1] the preference factor.
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Consumers might have a prefered consumption profile (¢);

— distance to this profile will be penalized.

Assume user's objective is now: min £ (ln, €_p)
£,eRT
(12
(s ln) = (L= a)bo(0) +afe—q| | st D fh=En
2 teT
with « € [0, 1] the preference factor. £ < £ < BVt
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User's preferences

Consumers might have a prefered consumption profile (¢);

— distance to this profile will be penalized.

Assume user's objective is now: min £ (ln, €_p)
£,eRT
(12
(s ln) = (L= a)bo(0) +afe—q| | st D fh=En
2 teT
with « € [0, 1] the preference factor. £ < £ < BVt

What is the impact on the equilibrium profile and global system costs ?
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Understanding a toy model

Assume: T = {P, O}, N users,
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Understanding a toy model

Assume: T = {P, 0}, N users, C;(¢t) = (¢*)2, ¢t >0.

Proposition (Jacquot et al., 2017)

Assume Vn € N, i——i +3> £ then, fora € (0, 1], the NE of GPP gives:

T

Vhe {P,O}, ("=E/2+ax (8"—£")/2. (4)

Paulin J. (EDF - Inria) Demand Response - Decentralized June 30, 2017 17 /19



Understanding a toy model

Assume: T = {P, 0}, N users, C;(¢t) = (¢%)?, £ >0.

Proposition (Jacquot et al., 2017)

Assume Vn € N, i——i +3> £ then, fora € (0, 1], the NE of GPP gives:

Yhe {P,0}, (' =E/2+ax (& —E")/2. (4)

v

Proposition (Jacquot et al., 2017)

Assume Vn e N, €F > % then Yo € [0,1], the NE of GHF gives:

vhe {P,0}, ("= E/2+¢(a) x (0" - 1")/2 . ()
where ¢(c) defwfﬁ € [0,1].
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Impact on the System Costs and the Price of Anarchy

System costs:

C(e) = Z Ce(€h),
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Impact on the System Costs and the Price

System costs:

cle) =Y G,

PoE =
(0] C

Paulin J.
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C(e) = Z Ce(€h),
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Impact on the System Costs and the Price of Anarchy

System costs:

C(e) = Z Ce(€h),

SUPge xE C(£)

PoE =
(¢} I

Social Cost:

sc(e) =) f(€)

SUPge e SC (€)
SC*
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Impact on the System Costs and the Price of Anarchy

System costs:

cle) =Y G, 0.16

sup ne C (£ 0.12
po  *Peex=C (0

C* -
< 0.08

(o]

Social Cost: o
o 0.04

sC(€) = £(e)
n

SUPge e SC (€)
SC*
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Conclusion

Two (complex!) problems:
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@ Need fast decentralized computation:
Fast convergence of BRD in network of parallel arcs ?

@ Need efficient equilibrium:
Can we compute tight bound on the PoA ?

Other aspects and questions:
e Non atomic (population) game model,

@ Stochastic parameters (Energy demand can change.. )
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Conclusion

Two (complex!) problems:

@ Need fast decentralized computation:
Fast convergence of BRD in network of parallel arcs ?

@ Need efficient equilibrium:
Can we compute tight bound on the PoA ?

Other aspects and questions:
e Non atomic (population) game model,

@ Stochastic parameters (Energy demand can change.. )

THANK YOU!
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