A Privacy-Preserving Disaggregation Algorithm for Nonconvex Optimization based on Alternate Projections

P.Jacquot ^{1,2} O.Beaude ¹ P.Benchimol ¹ S. Gaubert ² N.Oudjane ¹

¹EDF Lab Saclay

²Inria and CMAP, École polytechnique

Lundi 7 octobre 2019

Journée de rentrée du **CMAP**

Two main issues:

Two main issues:

• **dimension**: hundreds or thousands of users/consumers ;

Two main issues:

- **dimension**: hundreds or thousands of users/consumers ;
- privacy: users may not want to disclose individual constraints and consumption profiles to big brother.

$$\begin{array}{l} \min_{\boldsymbol{x} \in \mathbb{R}^{N \times T}, \ \boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) & (1a) \\ \boldsymbol{p} \in \mathcal{P} & (1b) \\ \sum_{n \in \mathcal{N}} x_{n,t} = p_{t}, \ \forall t \in \mathcal{T} & (1c) \\ \boldsymbol{x}_{n} \in \mathcal{X}_{n}, \ \forall n \in \mathcal{N} & (1d) \end{array}$$

$\min_{\boldsymbol{x} \in \mathbb{R}^{N \times \mathcal{T}, \; \boldsymbol{p} \in \mathbb{R}^{\mathcal{T}}} f(\boldsymbol{p})$		(1a)
$oldsymbol{ ho}\in\mathcal{P}$	operator constraints	(1b)
$\sum_{n\in\mathcal{N}}x_{n,t}=p_t, \ \forall t\in\mathcal{T}$	disaggregation	(1c)
$\mathbf{x}_n \in \mathcal{X}_n, \ \forall n \in \mathcal{N}$	agents constraints	(1d)

$$\min_{\boldsymbol{x} \in \mathbb{R}^{N \times T}, \ \boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p})$$
(1a)
$$\boldsymbol{p} \in \mathcal{P}$$
operator constraints (1b)
$$\sum_{n \in \mathcal{N}} x_{n,t} = p_t, \ \forall t \in \mathcal{T}$$
disaggregation (1c)
$$\boldsymbol{x}_n \in \mathcal{X}_n, \ \forall n \in \mathcal{N}$$
agents constraints (1d)

with
$$\mathcal{X}_n \stackrel{\text{def}}{=} \left\{ \mathbf{x}_n \in \mathbb{R}^T \mid \sum_t x_{n,t} = E_n \text{ and } \forall t, \underline{x}_{n,t} \leq x_{n,t} \leq \overline{x}_{n,t} \right\}$$

$$\min_{\boldsymbol{x} \in \mathbb{R}^{N \times T}, \ \boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p})$$
(1a)
$$\boldsymbol{p} \in \mathcal{P}$$
operator constraints (1b)
$$\sum_{n \in \mathcal{N}} x_{n,t} = p_t, \ \forall t \in \mathcal{T}$$
disaggregation (1c)
$$\boldsymbol{x}_n \in \mathcal{X}_n, \ \forall n \in \mathcal{N}$$
agents constraints (1d)

with
$$\mathcal{X}_n \stackrel{\text{def}}{=} \left\{ \mathbf{x}_n \!\in\! \mathbb{R}^T \mid \sum_t x_{n,t} \!=\! E_n \quad \text{and} \quad \forall t, \underline{x}_{n,t} \!\leq\! x_{n,t} \!\leq\! \overline{x}_{n,t} \right\}$$

 $\label{eq:Ressource} Ressource \ \mbox{allocation problems: many applications in energy, logistics, distributed computing, healthcare...}$

• distributed problems are usually addressed by Lagrangian decomposition approaches . . .

- distributed problems are usually addressed by Lagrangian decomposition approaches . . .
- which requires strong duality / convexity hypothesis!

- distributed problems are usually addressed by Lagrangian decomposition approaches . . .
- which requires strong duality / convexity hypothesis!
- a lot of problems have non convex constraints/ cost functions : our method does not require convexity.

MASTER PROBLEM
$$\min_{\boldsymbol{p} \in \mathbb{R}^T} f(\boldsymbol{p})$$
s.t. $\boldsymbol{p} \in \mathcal{P}^{(s)}$,

MASTER PROBLEM
$$\min_{\boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) \\ \text{s.t. } \boldsymbol{p} \in \mathcal{P}^{(s)} , \\ \text{where } \mathcal{P}^{(s)} \subset \mathcal{P} \end{cases}$$

DISAGGREGATION PROBLEM FIND $\mathbf{x} = (\mathbf{x}_n)_{n \in \mathcal{N}} \in \mathcal{Y}_{\mathbf{p}} \cap \mathcal{X}$ where $\mathcal{Y}_{\mathbf{p}} \stackrel{\text{def}}{=} \{ \mathbf{y} \in \mathbb{R}^{NT} | \sum_{n \in \mathcal{N}} \mathbf{y}_n = \mathbf{p} \}$ and $\mathcal{X} \stackrel{\text{def}}{=} \prod_{n \in \mathcal{N}} \mathcal{X}_n$.

Disaggregation Feasibility

Characterizing $\mathcal{Y}_{\boldsymbol{p}} \cap \mathcal{X} = \{ \boldsymbol{x} \in \mathcal{X} | \sum_{n \in \mathcal{N}} \boldsymbol{x}_n = \boldsymbol{p} \}$ Necessary <u>aggregated constraints:</u>

$$\sum_t p_t = \sum_n E_n \text{ and } \forall t, \ \sum_n \underline{x}_{n,t} \leq p_t \leq \sum_n \overline{x}_{n,t} \ .$$

Not sufficient!

Disaggregation Feasibility

Characterizing $\mathcal{Y}_{\boldsymbol{p}} \cap \mathcal{X} = \{ \boldsymbol{x} \in \mathcal{X} | \sum_{n \in \mathcal{N}} \boldsymbol{x}_n = \boldsymbol{p} \}$ Necessary <u>aggregated constraints:</u>

$$\sum_t p_t = \sum_n E_n$$
 and $orall t, \ \sum_n \underline{x}_{n,t} \leq p_t \leq \sum_n \overline{x}_{n,t}$.

Not sufficient!

Disaggregation Feasibility

Characterizing
$$\mathcal{Y}_{\boldsymbol{\rho}} \cap \mathcal{X} = \{ \boldsymbol{x} \in \mathcal{X} | \sum_{n \in \mathcal{N}} \boldsymbol{x}_n = \boldsymbol{\rho} \}$$

Theorem (Hoffman Circulation's Theorem)

Disaggregation is feasible (i.e. $\mathcal{X} \cap \mathcal{Y}_{p} \neq \emptyset$) iff for any $\mathcal{T}_{in} \subset \mathcal{T}, \mathcal{N}_{in} \subset \mathcal{N}$:

$$\mathcal{X} = \prod_{n} \mathcal{X}_{n} \text{ and } \mathcal{Y} = \mathcal{Y}_{p} = \{ \mathbf{x} \in \mathbb{R}^{NT} \mid \sum_{n \in \mathcal{N}} \mathbf{x}_{n} = p \}$$
Require: $\mathbf{y}^{(0)}, k = 0, \varepsilon_{\text{cvg}}, \|.\|$
repeat
 $\mathbf{x}^{(k+1)} \leftarrow P_{\mathcal{X}}(\mathbf{y}^{(k)})$
 $\mathbf{y}^{(k+1)} \leftarrow P_{\mathcal{Y}}(\mathbf{x}^{(k+1)})$
 $k \leftarrow k + 1$
until $\|\mathbf{y}^{(k)} - \mathbf{y}^{(k-1)}\| < \varepsilon_{\text{cvg}}$
 \mathcal{X}

$$\mathcal{X} = \prod_n \mathcal{X}_n$$
 and $\mathcal{Y} = \mathcal{Y}_{\boldsymbol{p}} = \{ \boldsymbol{x} \in \mathbb{R}^{NT} \mid \sum_{n \in \mathcal{N}} \boldsymbol{x}_n = \boldsymbol{p} \}$

$$\mathcal{X} = \prod_n \mathcal{X}_n$$
 and $\mathcal{Y} = \mathcal{Y}_{\boldsymbol{p}} = \{ \boldsymbol{x} \in \mathbb{R}^{NT} \mid \sum_{n \in \mathcal{N}} \boldsymbol{x}_n = \boldsymbol{p} \}$

$$\mathcal{X} = \prod_n \mathcal{X}_n$$
 and $\mathcal{Y} = \mathcal{Y}_p = \{ \mathbf{x} \in \mathbb{R}^{NT} \mid \sum_{n \in \mathcal{N}} \mathbf{x}_n = p \}$

$$\mathcal{X} = \prod_n \mathcal{X}_n$$
 and $\mathcal{Y} = \mathcal{Y}_{\boldsymbol{p}} = \{ \boldsymbol{x} \in \mathbb{R}^{NT} \mid \sum_{n \in \mathcal{N}} \boldsymbol{x}_n = \boldsymbol{p} \}$

$$\mathcal{X} = \prod_n \mathcal{X}_n$$
 and $\mathcal{Y} = \mathcal{Y}_{\boldsymbol{\rho}} = \{ \boldsymbol{x} \in \mathbb{R}^{NT} \mid \sum_{n \in \mathcal{N}} \boldsymbol{x}_n = \boldsymbol{\rho} \}$

$$\mathcal{X} = \prod_n \mathcal{X}_n$$
 and $\mathcal{Y} = \mathcal{Y}_{\boldsymbol{p}} = \{ \boldsymbol{x} \in \mathbb{R}^{NT} \mid \sum_{n \in \mathcal{N}} \boldsymbol{x}_n = \boldsymbol{p} \}$

Theorem (Gubin, Polyak, 1967)

Let \mathcal{X} and \mathcal{Y} be two convex sets with \mathcal{X} bounded, and let $(\mathbf{x}^{(k)})_k$ and $(\mathbf{y}^{(k)})_k$ be the two infinite sequences generated by APM with $\varepsilon_{cvg} = 0$. Then there exists $\mathbf{x}^{\infty} \in \mathcal{X}$ and $\mathbf{y}^{\infty} \in \mathcal{Y}$ such that:

$$\mathbf{x}^{(k)} \underset{k \to \infty}{\longrightarrow} \mathbf{x}^{\infty} , \quad \mathbf{y}^{(k)} \underset{k \to \infty}{\longrightarrow} \mathbf{y}^{\infty};$$
 (3a)

$$\|\boldsymbol{x}^{\infty} - \boldsymbol{y}^{\infty}\|_{2} = \min_{\boldsymbol{x} \in \mathcal{X}, \boldsymbol{y} \in \mathcal{Y}} \|\boldsymbol{x} - \boldsymbol{y}\|_{2} \quad . \tag{3b}$$

In particular, if $\mathcal{X} \cap \mathcal{Y} \neq \emptyset$, then $(\mathbf{x}^{(k)})_k$ and $(\mathbf{y}^{(k)})_k$ converge to a same point $\mathbf{x}^{\infty} \in \mathcal{X} \cap \mathcal{Y}$.

For the sets \mathcal{X} and \mathcal{Y} defined above, and if $\mathcal{X} \cap \mathcal{Y} = \emptyset$, the following sets given by the limit orbit $(\mathbf{x}^{\infty}, \mathbf{y}^{\infty})$ defined in Theorem 2:

(4a)

(4b)

For the sets \mathcal{X} and \mathcal{Y} defined above, and if $\mathcal{X} \cap \mathcal{Y} = \emptyset$, the following sets given by the limit orbit $(\mathbf{x}^{\infty}, \mathbf{y}^{\infty})$ defined in Theorem 2:

$$\mathcal{T}_{0} \stackrel{\text{def}}{=} \{t | p_{t} > \sum_{n \in \mathcal{N}} x_{n,t}^{\infty}\}$$
(4a)

(4b)

For the sets \mathcal{X} and \mathcal{Y} defined above, and if $\mathcal{X} \cap \mathcal{Y} = \emptyset$, the following sets given by the limit orbit $(\mathbf{x}^{\infty}, \mathbf{y}^{\infty})$ defined in Theorem 2:

$$\mathcal{T}_{0} \stackrel{\text{def}}{=} \{t | p_{t} > \sum_{n \in \mathcal{N}} x_{n,t}^{\infty}\}$$

$$\mathcal{N}_{0} \stackrel{\text{def}}{=} \{n | E_{n} - \sum_{t \notin \mathcal{T}_{0}} x_{n,t} - \sum_{t \in \mathcal{T}_{0}} \overline{x}_{n,t} < 0\}$$

$$(4a)$$

For the sets \mathcal{X} and \mathcal{Y} defined above, and if $\mathcal{X} \cap \mathcal{Y} = \emptyset$, the following sets given by the limit orbit $(\mathbf{x}^{\infty}, \mathbf{y}^{\infty})$ defined in Theorem 2:

$$\mathcal{T}_{0} \stackrel{\text{def}}{=} \{ t | p_{t} > \sum_{n \in \mathcal{N}} x_{n,t}^{\infty} \}$$
(4a)

$$\mathcal{N}_{0} \stackrel{\text{def}}{=} \{ n \mid E_{n} - \sum_{t \notin \mathcal{T}_{0}} \underline{x}_{n,t} - \sum_{t \in \mathcal{T}_{0}} \overline{x}_{n,t} < 0 \}$$
(4b)

define a "Hoffman cut" violated by **p**, that is:

$$\sum_{n\in\mathcal{N}_0} E_n + \sum_{t\in\mathcal{T}_0, n\notin\mathcal{N}_0} \overline{x}_{n,t} - \sum_{t\notin\mathcal{T}_0, n\in\mathcal{N}_0} \underline{x}_{n,t} < \sum_{t\in\mathcal{T}_0} p_t \ .$$

(5)

For the sets \mathcal{X} and \mathcal{Y} defined above, and if $\mathcal{X} \cap \mathcal{Y} = \emptyset$, the following sets given by the limit orbit $(\mathbf{x}^{\infty}, \mathbf{y}^{\infty})$ defined in Theorem 2:

$$\mathcal{T}_{0} \stackrel{\text{def}}{=} \{ t | p_{t} > \sum_{n \in \mathcal{N}} x_{n,t}^{\infty} \}$$
(4a)

$$\mathcal{N}_{0} \stackrel{\text{def}}{=} \{ n \mid E_{n} - \sum_{t \notin \mathcal{T}_{0}} \underline{x}_{n,t} - \sum_{t \in \mathcal{T}_{0}} \overline{x}_{n,t} < 0 \}$$
(4b)

define a "Hoffman cut" violated by **p**, that is:

$$\sum_{n\in\mathcal{N}_0} E_n + \sum_{t\in\mathcal{T}_0, n\notin\mathcal{N}_0} \overline{x}_{n,t} - \sum_{t\notin\mathcal{T}_0, n\in\mathcal{N}_0} \underline{x}_{n,t} < \sum_{t\in\mathcal{T}_0} p_t \; .$$

This cut can be reformulated in terms of $\mathbb{1}_N^\top \mathbf{x}^\infty$ as:

$$A_{\mathcal{T}_0} < \sum_{t \in \mathcal{T}_0} p_t \text{ with } A_{\mathcal{T}_0} \stackrel{\text{def}}{=} \sum_{t \in \mathcal{T}_0} \sum_{n \in \mathcal{N}} x_{n,t}^{\infty}.$$

(5)

(6)

Theorem

For the sets \mathcal{X} and \mathcal{Y} defined above, the two subsequences of AP $(\mathbf{x}^{(k)})_k$ and $(\mathbf{y}^{(k)})_k$ converge at a geometric rate to $\mathbf{x}^{\infty} \in \mathcal{X}$, $\mathbf{y}^{\infty} \in \mathcal{Y}$, with:

$$\|m{x}^{(k)} - m{x}^{\infty}\|_2 \leq 2\|m{x}^{(0)} - m{x}^{\infty}\|_2 imes
ho_{NT}^k$$

where $ho_{NT} \stackrel{\text{def}}{=} 1 - rac{4}{N(T+1)^2(T-1)} < 1$,

Same inequalities hold for the convergence of $\mathbf{y}^{(k)}$ to \mathbf{y}^{∞} .

Lemma (Nishihara et al, 2014)

For APM on polyhedra \mathcal{X} and \mathcal{Y} , the sequences $(\mathbf{x}^{(k)})_k$ and $(\mathbf{y}^{(k)})_k$ converge at a geometric rate, where the rate is bounded by the maximal value of the square of the **cosine of the Friedrichs angle** $c_F(U, V)$ between a face U of \mathcal{X} and a face V of \mathcal{Y} , where $c_F(U, V)$ is given by:

$$egin{aligned} \mathcal{L}_{\mathcal{F}}(U,V) &= \sup\{u^{ op} v \mid \|u\| \leq 1, \|v\| \leq 1 \ & u \in U \cap (U \cap V)^{ot}, v \in V \cap (U \cap V)^{ot}\}. \end{aligned}$$

Lemma (Nishihara et al, 2014)

For APM on polyhedra \mathcal{X} and \mathcal{Y} , the sequences $(\mathbf{x}^{(k)})_k$ and $(\mathbf{y}^{(k)})_k$ converge at a geometric rate, where the rate is bounded by the maximal value of the square of the **cosine of the Friedrichs angle** $c_F(U, V)$ between a face U of \mathcal{X} and a face V of \mathcal{Y} , where $c_F(U, V)$ is given by:

$$egin{aligned} & c_{\mathcal{F}}(U,V) = \sup\{u^{\mathsf{T}}v \mid \|u\| \leq 1, \|v\| \leq 1 \ & u \in U \cap (U \cap V)^{\perp}, v \in V \cap (U \cap V)^{\perp}\}. \end{aligned}$$

Lemma (Nishihara et al, 2014)

Let A and B be matrices with orthonormal rows and with equal numbers of columns and $\Lambda_{sv}(AB^{\top})$ the set of singular values of AB^{\top} . Then: - if $\Lambda_{sv}(AB^{\top}) = \{1\}$, then $c_F(Ker(A), Ker(B)) = 0$; - Otherwise, $c_F(Ker(A), Ker(B)) = \max_{\lambda < 1} \{\lambda \in \Lambda_{sv}(AB^{\top})\}$.
• \mathcal{Y} is affine subspace $\mathcal{Y} = \{ \mathbf{x} \in \mathbb{R}^{NT} | A\mathbf{x} = \sqrt{N}^{-1} \mathbf{1}_T \}$ with $\overrightarrow{\mathcal{Y}} = \text{Ker}(A)$ and $A \stackrel{\text{def}}{=} \sqrt{N}^{-1} J_{1,N} \otimes I_T$.

- \mathcal{Y} is affine subspace $\mathcal{Y} = \{ \mathbf{x} \in \mathbb{R}^{NT} | A\mathbf{x} = \sqrt{N^{-1}} \mathbf{1}_T \}$ with $\overrightarrow{\mathcal{Y}} = \text{Ker}(A)$ and $A \stackrel{\text{def}}{=} \sqrt{N^{-1}} J_{1,N} \otimes I_T$.
- Faces of \mathcal{X} are subsets of the collection of affine subspaces indexed by $(\overline{\mathcal{T}}_n, \underline{\mathcal{T}}_n)_n \subset \mathcal{T}^N$ (with $\overline{\mathcal{T}} \cap \underline{\mathcal{T}} = \emptyset$):

 $\mathcal{A}_{(\overline{\mathcal{T}}_n,\underline{\mathcal{T}}_n)_n} \stackrel{\text{def}}{=} \Big\{ (\boldsymbol{x})_{nt} \mid \forall n, \ \boldsymbol{x}_n^\top \mathbb{1}_{\mathcal{T}} = E_n \text{ and } \forall t \in \overline{\mathcal{T}}_n, x_{n,t} = \underline{x}_{n,t}, \text{ and } \forall t \in \underline{\mathcal{T}}_n, x_{n,t} = \overline{x}_{n,t} \Big\}.$

Direction is Ker(B), with $[B]_{[N]} \stackrel{\text{def}}{=} \sqrt{T}^{-1} I_N \otimes J_{1,T}$.

- \mathcal{Y} is affine subspace $\mathcal{Y} = \{ \mathbf{x} \in \mathbb{R}^{NT} | A\mathbf{x} = \sqrt{N}^{-1} \mathbf{1}_T \}$ with $\overrightarrow{\mathcal{Y}} = \text{Ker}(A)$ and $A \stackrel{\text{def}}{=} \sqrt{N}^{-1} J_{1,N} \otimes I_T$.
- Faces of \mathcal{X} are subsets of the collection of affine subspaces indexed by $(\overline{\mathcal{T}}_n, \underline{\mathcal{T}}_n)_n \subset \mathcal{T}^N$ (with $\overline{\mathcal{T}} \cap \underline{\mathcal{T}} = \emptyset$):

 $\mathcal{A}_{(\overline{\mathcal{T}}_n,\underline{\mathcal{T}}_n)_n} \stackrel{\text{def}}{=} \Big\{ (\boldsymbol{x})_{nt} \mid \forall n, \ \boldsymbol{x}_n^\top \mathbb{1}_{\mathcal{T}} = E_n \text{ and } \forall t \in \overline{\mathcal{T}}_n, x_{n,t} = \underline{x}_{n,t}, \text{ and } \forall t \in \underline{\mathcal{T}}_n, x_{n,t} = \overline{x}_{n,t} \Big\}.$

Direction is Ker(B), with $[B]_{[N]} \stackrel{\text{def}}{=} \sqrt{T}^{-1} I_N \otimes J_{1,T}$.

• We denote by $K_n \stackrel{\text{def}}{=} \operatorname{card}(\mathcal{T}_n)$. Renormalizing *B*, we show:

$$S := (AB^{\top})(A^{\top}B) = \frac{1}{N} \left(\sum_{n} \frac{\mathbb{1}_{\{k,\ell\} \subset \mathcal{T}_{n}^{c}}}{T - K_{n}} \right)_{k,\ell} + \frac{1}{N} \sum_{1 \leq t \leq T} \left(\sum_{n} \mathbb{1}_{t \in \mathcal{T}_{n}} \right) E_{t,t}.$$

- \mathcal{Y} is affine subspace $\mathcal{Y} = \{ \mathbf{x} \in \mathbb{R}^{NT} | A\mathbf{x} = \sqrt{N^{-1}} \mathbf{1}_T \}$ with $\overrightarrow{\mathcal{Y}} = \text{Ker}(A)$ and $A \stackrel{\text{def}}{=} \sqrt{N^{-1}} J_{1,N} \otimes I_T$.
- Faces of \mathcal{X} are subsets of the collection of affine subspaces indexed by $(\overline{\mathcal{T}}_n, \underline{\mathcal{T}}_n)_n \subset \mathcal{T}^N$ (with $\overline{\mathcal{T}} \cap \underline{\mathcal{T}} = \emptyset$):

 $\mathcal{A}_{(\overline{\mathcal{T}}_n,\underline{\mathcal{T}}_n)_n} \stackrel{\text{def}}{=} \Big\{ (\boldsymbol{x})_{nt} \mid \forall n, \ \boldsymbol{x}_n^\top \mathbb{1}_{\mathcal{T}} = E_n \text{ and } \forall t \in \overline{\mathcal{T}}_n, x_{n,t} = \underline{x}_{n,t}, \text{ and } \forall t \in \underline{\mathcal{T}}_n, x_{n,t} = \overline{x}_{n,t} \Big\}.$

Direction is Ker(B), with $[B]_{[N]} \stackrel{\text{def}}{=} \sqrt{T}^{-1} I_N \otimes J_{1,T}$.

• We denote by $K_n \stackrel{\text{def}}{=} \operatorname{card}(\mathcal{T}_n)$. Renormalizing *B*, we show:

$$S := (AB^{\top})(A^{\top}B) = \frac{1}{N} \left(\sum_{n} \frac{\mathbb{1}_{\{k,\ell\} \subset \mathcal{T}_{n}^{c}}}{\mathcal{T} - \mathcal{K}_{n}} \right)_{k,\ell} + \frac{1}{N} \sum_{1 \leq t \leq \mathcal{T}} \left(\sum_{n} \mathbb{1}_{t \in \mathcal{T}_{n}} \right) E_{t,t}.$$

• Denote $\overline{\mathcal{T}} \stackrel{\text{def}}{=} \cup_n \mathcal{T}_n^c$ and $P \stackrel{\text{def}}{=} I_{\mathcal{T}} - S$. Then $P = \text{diag}(P_{\overline{\mathcal{T}}}, 0_{\overline{\mathcal{T}}^c})$ \rightarrow restrict to $\text{Vect}(e_t)_{t\in\overline{\mathcal{T}}}$ to find $\lambda_1(P)$ (least positive eigval)

• Consider graph $\mathcal{G} = (\overline{\mathcal{T}}, \mathcal{E})$ whose vertices set is $\overline{\mathcal{T}}$ and edge (k, ℓ) has weight $S_{k,\ell} = \frac{1}{N} \sum_n \frac{\mathbb{1}_{\{k,\ell\} \subset \mathcal{T}_n^c}}{T-K_n}$. One can show that $\sum_{\ell \neq k} -P_{k,\ell} = P_{kk}$ $\rightarrow P$ is Laplacian matrix of \mathcal{G} .

- Consider graph $\mathcal{G} = (\overline{\mathcal{T}}, \mathcal{E})$ whose vertices set is $\overline{\mathcal{T}}$ and edge (k, ℓ) has weight $S_{k,\ell} = \frac{1}{N} \sum_n \frac{\mathbb{1}_{\{k,\ell\} \subset \mathcal{T}_n^c}}{T-K_n}$. One can show that $\sum_{\ell \neq k} -P_{k,\ell} = P_{kk}$ $\rightarrow P$ is Laplacian matrix of \mathcal{G} .
- Using Laplacian property and Cauchy-Schwartz, $\forall u \perp \mathbf{1}$:

$$u^{\top} P u \geq \min_{k,\ell \in (s^* - t^*)} (-P_{k,\ell}) \frac{(u_{t^*} - u_{s^*})^2}{d_{s^*,t^*}} \geq \frac{4T \|u\|_2^2}{N(T+1)^2 (T-1)^2}$$

where $u_{t^*} := \max_t u_t$, $u_{s^*} := \min_t u_t$ and d_{s^*,t^*} distance in \mathcal{G} , and (s^*-t^*) a path from s^* to t^* .

- Consider graph $\mathcal{G} = (\overline{\mathcal{T}}, \mathcal{E})$ whose vertices set is $\overline{\mathcal{T}}$ and edge (k, ℓ) has weight $S_{k,\ell} = \frac{1}{N} \sum_n \frac{\mathbb{1}_{\{k,\ell\} \subset \mathcal{T}_n^c}}{T K_n}$. One can show that $\sum_{\ell \neq k} -P_{k,\ell} = P_{kk}$ $\rightarrow P$ is Laplacian matrix of \mathcal{G} .
- Using Laplacian property and Cauchy-Schwartz, $\forall u \perp \mathbf{1}$:

$$u^{\top} P u \geq \min_{k,\ell \in (s^* - t^*)} (-P_{k,\ell}) \frac{(u_{t^*} - u_{s^*})^2}{d_{s^*,t^*}} \geq \frac{4T \|u\|_2^2}{N(T+1)^2 (T-1)^2}$$

where $u_{t^*} := \max_t u_t$, $u_{s^*} := \min_t u_t$ and d_{s^*,t^*} distance in \mathcal{G} , and (s^*-t^*) a path from s^* to t^* .

• As **1** is an eigenvector of *P* associated to $\lambda_0 = 0$, from the minmax theorem, we get $\lambda_1(P) \ge \frac{4}{N(T+1)^2(T-1)} := 1 - \rho_{NT}$

MASTER PROBLEM
$$\min_{\boldsymbol{p} \in \mathbb{R}^T} f(\boldsymbol{p})$$
s.t. $\boldsymbol{p} \in \mathcal{P}^{(s)}$

DISAGGREGATION PROBLEM

Find
$$\boldsymbol{x} \in \mathcal{Y}_{\boldsymbol{p}} \cap (\prod_n \mathcal{X}_n)$$

$$\mathcal{P}^{(s+1)} = \mathcal{P}^{(s)} \cap \{ \boldsymbol{p} | A_{\mathcal{T}_0} < \sum_{t \in \mathcal{T}_0} p_t \}$$

• projections $\mathbf{x}_n = P_{\mathcal{X}_n}(\mathbf{y}_n)$ can be computed locally ;

- projections $\mathbf{x}_n = P_{\mathcal{X}_n}(\mathbf{y}_n)$ can be computed locally ;
- projection $\mathbf{y} = P_{\mathcal{Y}_{p}}(\mathbf{x})$ on $\mathcal{Y}_{p} = \{\mathbf{x} \in \mathbb{R}^{NT} \mid \sum_{n} \mathbf{x}_{n} = \mathbf{p}\}$ is explicit (affine space):

$$\forall n, \ \mathbf{y}_n = \mathbf{x}_n + \frac{1}{N} \left(\mathbf{p} - (\sum_m \mathbf{x}_m) \right);$$

- projections $\boldsymbol{x}_n = P_{\mathcal{X}_n}(\boldsymbol{y}_n)$ can be computed locally ;
- projection $\mathbf{y} = P_{\mathcal{Y}_{p}}(\mathbf{x})$ on $\mathcal{Y}_{p} = \{\mathbf{x} \in \mathbb{R}^{NT} \mid \sum_{n} \mathbf{x}_{n} = \mathbf{p}\}$ is explicit (affine space):

$$\forall n, \ \boldsymbol{y}_n = \boldsymbol{x}_n + \frac{1}{N} \left(\boldsymbol{p} - (\sum_m \boldsymbol{x}_m) \right);$$

• only requires the aggregate quantity $\sum_n x_n$, then local operations;

- projections $\mathbf{x}_n = P_{\mathcal{X}_n}(\mathbf{y}_n)$ can be computed locally ;
- projection $\mathbf{y} = P_{\mathcal{Y}_{p}}(\mathbf{x})$ on $\mathcal{Y}_{p} = \{\mathbf{x} \in \mathbb{R}^{NT} \mid \sum_{n} \mathbf{x}_{n} = \mathbf{p}\}$ is explicit (affine space):

$$\forall n, \ \boldsymbol{y}_n = \boldsymbol{x}_n + \frac{1}{N} \left(\boldsymbol{p} - (\sum_m \boldsymbol{x}_m) \right);$$

• only requires the aggregate quantity $\sum_n \mathbf{x}_n$, then local operations;

How can we compute $\sum_{n} x_{n}$ without disclosing profiles to Big Brother ?

Issues: transmission of profiles for projection

In APM, agents still have to provide profiles $(\mathbf{x}_n^{(k)})_n$ \rightarrow Secure Multiparty Computation (SMC) principle

Require: Each agent has a profile $(\mathbf{x}_n)_{n \in \mathcal{N}}$

1: for each agent $n \in \mathcal{N}$ do

2: Draw
$$\forall t, (s_{n,t,m})_{m=1}^{N-1} \in \mathcal{U}([0,A]^{N-1})$$

3: and set
$$\forall t, s_{n,t,N} \stackrel{\text{def}}{=} x_{n,t} - \sum_{m=1}^{N-1} s_{n,t,m}$$

4: Send
$$(s_{n,t,m})_{t\in\mathcal{T}}$$
 to agent $m\in\mathcal{N}$

5: **done**

6: for each agent $n \in \mathcal{N}$ do

7: Compute
$$\forall t, \sigma_{n,t} = \sum_{m \in \mathcal{N}} s_{m,t,n}$$

- 8: Send $(\sigma_{n,t})_{t\in\mathcal{T}}$ to operator
- 9: **done**
- 10: Operator computes $m{S} = \sum_{n \in \mathcal{N}} \sigma_n$

Issues: transmission of profiles for projection

In APM, agents still have to provide profiles $(\mathbf{x}_n^{(k)})_n$ \rightarrow Secure Multiparty Computation (SMC) principle

Require: Each agent has a profile $(\mathbf{x}_n)_{n \in \mathcal{N}}$

1: for each agent $n \in \mathcal{N}$ do

2: Draw
$$\forall t, (s_{n,t,m})_{m=1}^{N-1} \in \mathcal{U}([0,A]^{N-1})$$

3: and set
$$\forall t, s_{n,t,N} \stackrel{\text{def}}{=} x_{n,t} - \sum_{m=1}^{N-1} s_{n,t,m}$$

4: Send $(s_{n,t,m})_{t\in\mathcal{T}}$ to agent $m\in\mathcal{N}$

5: **done**

6: for each agent $n \in \mathcal{N}$ do

7: Compute
$$\forall t, \sigma_{n,t} = \sum_{m \in \mathcal{N}} s_{m,t,n}$$

- 8: Send $(\sigma_{n,t})_{t\in\mathcal{T}}$ to operator
- 9: **done**
- 10: Operator computes $m{S} = \sum_{n \in \mathcal{N}} \sigma_n$

 $x_1 = s_{1,1} + s_{1,2} + s_{1,3}$ $x_2 = s_{2,1} + s_{2,2} + s_{2,3}$ $x_3 = s_{3,1} + s_{3,2} + s_{3,3}$

Issues: transmission of profiles for projection

In APM, agents still have to provide profiles $(\mathbf{x}_n^{(k)})_n$ \rightarrow Secure Multiparty Computation (SMC) principle

Require: Each agent has a profile $(\mathbf{x}_n)_{n \in \mathcal{N}}$ 1: for each agent $n \in \mathcal{N}$ do 2: Draw $\forall t, (s_{n,t,m})_{m=1}^{N-1} \in \mathcal{U}([0, A]^{N-1})$ 3: and set $\forall t, s_{n,t,N} \stackrel{def}{=} x_{n,t} - \sum_{m=1}^{N-1} s_{n,t,m}$ 4: Send $(s_{n,t,m})_{t \in \mathcal{T}}$ to agent $m \in \mathcal{N}$ 5: done 6: for each agent $n \in \mathcal{N}$ do 7: Compute $\forall t, \sigma_{n,t} = \sum_{m \in \mathcal{N}} s_{m,t,n}$ 8: Send $(\sigma_{n,t})_{t \in \mathcal{T}}$ to operator 9: done

10: Operator computes $\boldsymbol{S} = \sum_{n \in \mathcal{N}} \boldsymbol{\sigma}_n$

$$x_{1} = s_{1,1} + s_{1,2} + s_{1,3}$$
$$x_{2} = s_{2,1} + s_{2,2} + s_{2,3}$$
$$x_{3} = s_{3,1} + s_{3,2} + s_{3,3}$$
$$\sum_{n} x_{n} = \sigma_{1} + \sigma_{2} + \sigma_{3}$$

Require:
$$s = 0$$
, $\mathcal{P}^{(0)} = \mathcal{P}$; DISAG = FALSE
1: while Not DISAG **do**

Require:
$$s = 0$$
, $\mathcal{P}^{(0)} = \mathcal{P}$; DISAG = FALSE
1: while Not DISAG **do**
2: Compute $\mathbf{p}^{(s)} = \arg\min_{\mathbf{p} \in \mathcal{P}_{cs}^{(s)}} \mathbf{p}$

MASTER PROBLEM
$$\min_{\boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p})$$
s.t. $\boldsymbol{p} \in \mathcal{P}^{(s)}$

Require:
$$s = 0$$
, $\mathcal{P}^{(0)} = \mathcal{P}$; DISAG = FALSE
1: while Not DISAG do
2: Compute $\boldsymbol{p}^{(s)} = \arg \min_{\boldsymbol{p} \in \mathcal{P}_{cs}^{(s)}} \boldsymbol{p}$

3: DISAG $\leftarrow \mathsf{APM}(\boldsymbol{p}^{(s)})$

Require:
$$s = 0$$
, $\mathcal{P}^{(0)} = \mathcal{P}$; DISAG = FALSE
1: while Not DISAG do
2: Compute $\mathbf{p}^{(s)} = \arg\min_{\mathbf{p} \in \mathcal{P}_{cs}^{(s)}} \mathbf{p}$
3: DISAG $\leftarrow APM(\mathbf{p}^{(s)})$
4: if DISAG then
5: Operator adopts $\mathbf{p}^{(s)}$

Require: s = 0, $\mathcal{P}^{(0)} = \mathcal{P}$: DISAG = FALSE 1: while Not DISAG do Compute $\boldsymbol{p}^{(s)} = \arg\min_{\boldsymbol{p} \in \mathcal{P}_{cs}^{(s)}} \boldsymbol{p}$ 2: DISAG $\leftarrow \mathsf{APM}(\mathbf{p}^{(s)})$ 3: if DISAG then 4: Operator adopts $p^{(s)}$ 5: else 6. Obtain $\mathcal{T}_{0}^{(s)}, \mathbf{A}_{\mathcal{T}_{0}}^{(s)}$ from $\mathsf{APM}(\boldsymbol{p}^{(s)})$ 7: $\mathcal{P}^{(s+1)} \leftarrow \mathcal{P}^{(s)} \cap \{ p | \sum_{t \in \mathcal{T}_{\alpha}^{(s)}} p_t \leq \mathrm{A}_{\mathcal{T}_0}^{(s)} \}$ 8.

9: **end**

Require: s = 0, $\mathcal{P}^{(0)} = \mathcal{P}$: DISAG = FALSE 1: while Not DISAG do Compute $\boldsymbol{p}^{(s)} = \arg\min_{\boldsymbol{p} \in \mathcal{P}_{cs}^{(s)}} \boldsymbol{p}$ 2: DISAG $\leftarrow \mathsf{APM}(\mathbf{p}^{(s)})$ 3: if DISAG then 4: Operator adopts $p^{(s)}$ 5: else 6. Obtain $\mathcal{T}_{0}^{(s)}, \mathbf{A}_{\mathcal{T}_{0}}^{(s)}$ from $\mathsf{APM}(\boldsymbol{p}^{(s)})$ 7: $\mathcal{P}^{(s+1)} \leftarrow \mathcal{P}^{(s)} \cap \{ p | \sum_{t \in \mathcal{T}_{s}^{(s)}} p_{t} \leq A_{\mathcal{T}_{0}}^{(s)} \}$ 8.

9: **end**

10: $s \leftarrow s+1$

11: **done**

Proposition

The procedure stops after a finite number of iterations, as at most 2^{T} constraints can be added to the master problem.

Proposition

The procedure stops after a finite number of iterations, as at most 2^{T} constraints can be added to the master problem.

ISSUE: we need the limit \mathbf{x}^{∞} of the APM sequence to obtain the cut..

Proposition

The procedure stops after a finite number of iterations, as at most 2^{T} constraints can be added to the master problem.

ISSUE: we need the limit \mathbf{x}^{∞} of the APM sequence to obtain the cut.. but in practice we can stop in finite time and obtain the approximated same cut!

MASTER PROBLEM

$$\begin{array}{c} \min_{\boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) \\ \text{s.t. } \boldsymbol{p} \in \mathcal{P}^{(s)} \\ \end{array}$$
DISAGGREGATION PB
FIND $\boldsymbol{x} \in \mathcal{Y}_{\boldsymbol{p}} \cap (\prod_{n} \mathcal{X}_{n})$

MASTER PROBLEM

$$\begin{array}{c} \min_{\boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) \\ \text{s.t. } \boldsymbol{p} \in \mathcal{P}^{(s)} \\ \end{array}$$
DISAGGREGATION PB
FIND $\boldsymbol{x} \in \mathcal{Y}_{\boldsymbol{p}} \cap (\prod_{n} \mathcal{X}_{n}) \\$
FEASIBLE!

• agent constraints (upper bounds \overline{x}_n , lower bounds \underline{x}_n , demand E_n);

- agent constraints (upper bounds \overline{x}_n , lower bounds \underline{x}_n , demand E_n);
- **2** individual profile \mathbf{x}_n (as well as the iterates $(\mathbf{x}^{(k)})_k$ and $(\mathbf{y}^{(k)})_k$ in APM).

- agent constraints (upper bounds \overline{x}_n , lower bounds \underline{x}_n , demand E_n);
- **2** individual profile \mathbf{x}_n (as well as the iterates $(\mathbf{x}^{(k)})_k$ and $(\mathbf{y}^{(k)})_k$ in APM).

Further work and extensions:
The method computes a resource allocation p and N individual agents profiles $(x_n)_n$, such that (x, p) solves the global (nonconvex) problem, while keeping private:

- agent constraints (upper bounds \overline{x}_n , lower bounds \underline{x}_n , demand E_n);
- **2** individual profile \mathbf{x}_n (as well as the iterates $(\mathbf{x}^{(k)})_k$ and $(\mathbf{y}^{(k)})_k$ in APM).

Further work and extensions:

• a variant of the algorithm can deal individual constaints $X_n \rightarrow$ arbitrary (polyhedral) set, resolving local LPs to get a cut;

The method computes a resource allocation p and N individual agents profiles $(x_n)_n$, such that (x, p) solves the global (nonconvex) problem, while keeping private:

- agent constraints (upper bounds \overline{x}_n , lower bounds \underline{x}_n , demand E_n);
- **2** individual profile \mathbf{x}_n (as well as the iterates $(\mathbf{x}^{(k)})_k$ and $(\mathbf{y}^{(k)})_k$ in APM).

Further work and extensions:

- a variant of the algorithm can deal individual constaints $X_n \rightarrow$ arbitrary (polyhedral) set, resolving local LPs to get a cut;
- can we generalize the direct obtention of the cut for other polyhedra ?

The method computes a resource allocation p and N individual agents profiles $(x_n)_n$, such that (x, p) solves the global (nonconvex) problem, while keeping private:

- agent constraints (upper bounds \overline{x}_n , lower bounds \underline{x}_n , demand E_n);
- **2** individual profile \mathbf{x}_n (as well as the iterates $(\mathbf{x}^{(k)})_k$ and $(\mathbf{y}^{(k)})_k$ in APM).

Further work and extensions:

- a variant of the algorithm can deal individual constaints $X_n \rightarrow$ arbitrary (polyhedral) set, resolving local LPs to get a cut;
- can we generalize the direct obtention of the cut for other polyhedra ?
- analysis on the maximal number of constraints added (polynomial bound ?).

THANKS !

- Jacquot, Paulin, Olivier Beaude, Pascal Benchimol, Stéphane Gaubert, and Nadia Oudjane (2019a). "A Privacy-preserving Disaggregation Algorithm for Non-intrusive Management of Flexible Energy". In: <u>IEEE 58th Conference on Decision and Control (CDC)</u>. IEEE. arXiv: 1903.03053.
- (2019b). "A Privacy-preserving Method to optimize distributed resource allocation". In: <u>arXiv preprint</u>. arXiv: 1908.03080.