A Privacy-Preserving Disaggregation Algorithm for Nonconvex Optimization based on Alternate Projections

P.Jacquot ${ }^{1,2}$
O.Beaude ${ }^{1}$
P.Benchimol ${ }^{1}$
S. Gaubert ${ }^{2}$
N.Oudjane ${ }^{1}$
${ }^{1}$ EDF Lab Saclay
${ }^{2}$ Inria and CMAP, École polytechnique

Lundi 7 octobre 2019
eDF
Journée de rentrée du CMAP

Introduction and Context

Introduction and Context

Two main issues:

Introduction and Context

Two main issues:

- dimension: hundreds or thousands of users/consumers ;

Introduction and Context

Two main issues:

- dimension: hundreds or thousands of users/consumers ;
- privacy: users may not want to disclose individual constraints and consumption profiles to big brother.

Problem Formulation

$$
\begin{align*}
& \min _{\boldsymbol{x} \in \mathbb{R}^{N \times T}, \boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) \tag{1a}\\
& \boldsymbol{p} \in \mathcal{P} \tag{1b}\\
& \sum_{n \in \mathcal{N}} x_{n, t}=p_{t}, \forall t \in \mathcal{T} \tag{1c}\\
& \boldsymbol{x}_{n} \in \mathcal{X}_{n}, \quad \forall n \in \mathcal{N} \tag{1d}
\end{align*}
$$

Problem Formulation

$$
\begin{aligned}
& \min _{\substack{x \in \mathbb{R}^{\times \times T}, \boldsymbol{p} \in \mathbb{R}^{T}}} f(\boldsymbol{p}) \\
& \boldsymbol{p} \in \mathcal{P} \\
& \sum_{n \in \mathcal{N}} x_{n, t}=p_{t}, \forall t \in \mathcal{T} \\
& \mathbf{x}_{n} \in \mathcal{X}_{n}, \forall n \in \mathcal{N}
\end{aligned}
$$

(1b)
(1c)

Problem Formulation

$$
\begin{align*}
& \min _{\boldsymbol{x} \in \mathbb{R}^{N \times T}, \boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) \tag{1a}\\
& \boldsymbol{p} \in \mathcal{P} \\
& \sum_{n \in \mathcal{N}} x_{n, t}=p_{t}, \forall t \in \mathcal{T} \\
& \boldsymbol{x}_{n} \in \mathcal{X}_{n}, \forall n \in \mathcal{N} \\
& \text { with } \mathcal{X}_{n} \stackrel{\text { def }}{=}\left\{\boldsymbol{x}_{n} \in \mathbb{R}^{T} \mid \sum_{t} x_{n, t}=E_{n}\right. \\
& \text { and } \quad \text { aperator constraints } \tag{1b}\\
& \left.\forall t, \underline{x}_{n, t} \leq x_{n, t} \leq \bar{x}_{n, t}\right\}
\end{align*}
$$

Problem Formulation

$$
\begin{align*}
& \min _{\boldsymbol{x} \in \mathbb{R}^{N \times T}, \boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) \\
& \boldsymbol{p} \in \mathcal{P} \tag{1b}\\
& \sum_{n \in \mathcal{N}} x_{n, t}=p_{t}, \forall t \in \mathcal{T} \tag{1c}\\
& \boldsymbol{x}_{n} \in \mathcal{X}_{n}, \forall n \in \mathcal{N} \tag{1d}\\
& \text { with } \mathcal{X}_{n} \stackrel{\text { def }}{=}\left\{\boldsymbol{x}_{n} \in \mathbb{R}^{T} \mid \sum_{t} x_{n, t}=E_{n}\right. \\
& \text { operator constraints } \\
& \text { RESSOURCE ALLOCATION PROBLEMS: many applications in energy, logistics, } \\
& \text { distributed computing, healthcare... }
\end{align*}
$$

- distributed problems are usually addressed by Lagrangian decomposition approaches ...
- distributed problems are usually addressed by Lagrangian decomposition approaches ...
- which requires strong duality / convexity hypothesis!
- distributed problems are usually addressed by Lagrangian decomposition approaches ...
- which requires strong duality / convexity hypothesis!
- a lot of problems have non convex constraints/ cost functions : our method does not require convexity.

Two subproblems

Our method considers two subproblems iteratively:

Two subproblems

Our method considers two subproblems iteratively:

```
Master Problem
        min
        p\in\mp@subsup{\mathbb{R}}{}{T}
    s.t. p}\in\mp@subsup{\mathcal{P}}{}{(s)}\mathrm{ ,
where }\mp@subsup{\mathcal{P}}{}{(s)}\subset\mathcal{P
```


Two subproblems

Our method considers two subproblems iteratively:

Master Problem $\min _{\boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p})$ $\boldsymbol{p} \in \mathbb{R}^{T}$
s.t. $\boldsymbol{p} \in \mathcal{P}^{(s)}$,
where $\mathcal{P}^{(s)} \subset \mathcal{P}$

Disaggregation Problem

$$
\text { FIND } \boldsymbol{x}=\left(\boldsymbol{x}_{n}\right)_{n \in \mathcal{N}} \in \mathcal{Y}_{\boldsymbol{p}} \cap \mathcal{X}
$$

$$
\text { where } \mathcal{Y}_{\boldsymbol{p}} \stackrel{\text { def }}{=}\left\{\boldsymbol{y} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} \boldsymbol{y}_{n}=\boldsymbol{p}\right\}
$$

$$
\text { and } \mathcal{X} \stackrel{\text { def }}{=} \prod_{n \in \mathcal{N}} \mathcal{X}_{n}
$$

Two subproblems

Our method considers two subproblems iteratively:

| Master Problem |
| :---: | :---: |
| $\min _{\boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p})$ |
| s.t. $\boldsymbol{p} \in \mathcal{P}^{(s)}$, |
| where $\mathcal{P}^{(s)} \subset \mathcal{P}$ |$\quad \boldsymbol{p}^{(s)} |$| DisagGregation Problem |
| :---: |
| Find $\boldsymbol{x}=\left(\boldsymbol{x}_{n}\right)_{n \in \mathcal{N}} \in \mathcal{Y}_{\boldsymbol{p}} \cap \mathcal{X}$ |
| where $\mathcal{Y}_{\boldsymbol{p}} \stackrel{\text { def }}{=}\left\{\boldsymbol{y} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} \boldsymbol{y}_{n}=\boldsymbol{p}\right\}$ |
| and $\mathcal{X} \stackrel{\text { def }}{=} \prod_{n \in \mathcal{N}} \mathcal{X}_{n}$. |

Two subproblems

Our method considers two subproblems iteratively:

Master Problem	$\boldsymbol{p}^{(s)}$	Disaggregation Problem
min $f(\boldsymbol{p})$		Find $\boldsymbol{x}=\left(x_{n}\right)_{n \in \mathcal{N}} \in \mathcal{Y}_{\boldsymbol{p}} \cap \mathcal{X}$
s.t. $\boldsymbol{p} \in \mathcal{P}^{(s)}$,	$\mathcal{P}^{(s+1)}$	$\text { ere } \mathcal{Y}_{\boldsymbol{p}} \stackrel{\text { def }}{=}\left\{\boldsymbol{y} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} \boldsymbol{y}_{n}=\boldsymbol{p}\right\}$
where $\mathcal{P}^{(s)} \subset \mathcal{P}$		and $\mathcal{X} \stackrel{\text { def }}{=} \prod \mathcal{X}_{n}$.

Disaggregation Feasibility

Characterizing $\mathcal{Y}_{\boldsymbol{p}} \cap \mathcal{X}=\left\{\boldsymbol{x} \in \mathcal{X} \mid \sum_{n \in \mathcal{N}} \boldsymbol{x}_{n}=\boldsymbol{p}\right\}$ Necessary aggregated constraints:

$$
\sum_{t} p_{t}=\sum_{n} E_{n} \text { and } \forall t, \sum_{n} \underline{x}_{n, t} \leq p_{t} \leq \sum_{n} \bar{x}_{n, t}
$$

Not sufficient!

Disaggregation Feasibility

Characterizing $\mathcal{Y}_{\boldsymbol{p}} \cap \mathcal{X}=\left\{\boldsymbol{x} \in \mathcal{X} \mid \sum_{n \in \mathcal{N}} \boldsymbol{x}_{n}=\boldsymbol{p}\right\}$
Necessary aggregated constraints:

$$
\sum_{t} p_{t}=\sum_{n} E_{n} \text { and } \forall t, \sum_{n} \underline{x}_{n, t} \leq p_{t} \leq \sum_{n} \bar{x}_{n, t}
$$

Not sufficient!

Disaggregation Feasibility

Characterizing $\mathcal{Y}_{\boldsymbol{p}} \cap \mathcal{X}=\left\{\boldsymbol{x} \in \mathcal{X} \mid \sum_{n \in \mathcal{N}} \boldsymbol{x}_{n}=\boldsymbol{p}\right\}$

Theorem (Hoffman Circulation's Theorem)

Disaggregation is feasible (i.e. $\mathcal{X} \cap \mathcal{Y}_{\boldsymbol{p}} \neq \emptyset$) iff for any $\mathcal{T}_{\text {in }} \subset \mathcal{T}, \mathcal{N}_{\text {in }} \subset \mathcal{N}$:

$$
\begin{equation*}
\sum_{t \notin \mathcal{T}_{\text {in }}} p_{t} \leq \sum_{t \notin \mathcal{T}_{\text {in }}, n \in \mathcal{N}_{\text {in }}} \bar{x}_{n, t}-\sum_{t \in \mathcal{T}_{\text {in }}, n \notin \mathcal{N}_{\text {in }}} \underline{x}_{n, t}+\sum_{n \notin \mathcal{N}_{\text {in }}} E_{n} \tag{2}
\end{equation*}
$$

Alternate Projections Algorithm

$\mathcal{X}=\prod_{n} \mathcal{X}_{n} \quad$ and $\quad \mathcal{Y}=\mathcal{Y}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} \boldsymbol{x}_{n}=\boldsymbol{p}\right\}$

Require: $\boldsymbol{y}^{(0)}, k=0, \varepsilon_{\mathrm{cvg}},\|$. repeat

$$
\begin{gathered}
\boldsymbol{x}^{(k+1)} \leftarrow P_{\mathcal{X}}\left(\boldsymbol{y}^{(k)}\right) \\
\boldsymbol{y}^{(k+1)} \leftarrow P_{\mathcal{Y}}\left(\boldsymbol{x}^{(k+1)}\right) \\
k \leftarrow k+1 \\
\text { until }\left\|\boldsymbol{y}^{(k)}-\boldsymbol{y}^{(k-1)}\right\|<\varepsilon_{\mathrm{cvg}}
\end{gathered}
$$

Alternate Projections Algorithm

$\mathcal{X}=\prod_{n} \mathcal{X}_{n} \quad$ and $\quad \mathcal{Y}=\mathcal{Y}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} \boldsymbol{x}_{n}=\boldsymbol{p}\right\}$

Require: $\boldsymbol{y}^{(0)}, k=0, \varepsilon_{\mathrm{cvg}},\|$. repeat

$$
\begin{aligned}
& \boldsymbol{x}^{(k+1)} \leftarrow P_{\chi}\left(\boldsymbol{y}^{(k)}\right) \\
& \boldsymbol{y}^{(k+1)} \leftarrow P_{y}\left(\boldsymbol{x}^{(k+1)}\right) \\
& k \leftarrow k+1 \\
& \text { until }\left\|\boldsymbol{y}^{(k)}-\boldsymbol{y}^{(k-1)}\right\|<\varepsilon_{\text {cvg }}
\end{aligned}
$$

Alternate Projections Algorithm

$\mathcal{X}=\prod_{n} \mathcal{X}_{n} \quad$ and $\quad \mathcal{Y}=\mathcal{Y}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} \boldsymbol{x}_{n}=\boldsymbol{p}\right\}$

Require: $\boldsymbol{y}^{(0)}, k=0, \varepsilon_{\mathrm{cvg}},\|\cdot\|$ repeat

$$
\begin{aligned}
& \boldsymbol{x}^{(k+1)} \leftarrow P_{\mathcal{X}}\left(\boldsymbol{y}^{(k)}\right) \\
& \boldsymbol{y}^{(k+1)} \leftarrow P_{\mathcal{Y}\left(\boldsymbol{x}^{(k+1)}\right)} \\
& k \leftarrow k+1 \\
& \text { until }\left\|\boldsymbol{y}^{(k)}-\boldsymbol{y}^{(k-1)}\right\|<\varepsilon_{\mathrm{cvg}}
\end{aligned}
$$

Alternate Projections Algorithm

$\mathcal{X}=\prod_{n} \mathcal{X}_{n} \quad$ and $\quad \mathcal{Y}=\mathcal{Y}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} \boldsymbol{x}_{n}=\boldsymbol{p}\right\}$

Require: $\boldsymbol{y}^{(0)}, k=0, \varepsilon_{\mathrm{cvg}},\|$. repeat

$$
\begin{aligned}
& \boldsymbol{x}^{(k+1)} \leftarrow P_{\mathcal{X}}\left(\boldsymbol{y}^{(k)}\right) \\
& \boldsymbol{y}^{(k+1)} \leftarrow P_{\mathcal{Y}}\left(\boldsymbol{x}^{(k+1)}\right) \\
& k \leftarrow k+1 \\
& \text { until }\left\|\boldsymbol{y}^{(k)}-\boldsymbol{y}^{(k-1)}\right\|<\varepsilon_{\mathrm{cvg}}
\end{aligned}
$$

Alternate Projections Algorithm

$\mathcal{X}=\prod_{n} \mathcal{X}_{n} \quad$ and $\quad \mathcal{Y}=\mathcal{Y}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} \boldsymbol{x}_{n}=\boldsymbol{p}\right\}$

Require: $\boldsymbol{y}^{(0)}, k=0, \varepsilon_{\mathrm{cvg}},\|$. repeat

$$
\begin{aligned}
& \boldsymbol{x}^{(k+1)} \leftarrow P_{\mathcal{X}}\left(\boldsymbol{y}^{(k)}\right) \\
& \boldsymbol{y}^{(k+1)} \leftarrow P_{\mathcal{Y}}\left(\boldsymbol{x}^{(k+1)}\right) \\
& k \leftarrow k+1 \\
& \text { until }\left\|\boldsymbol{y}^{(k)}-\boldsymbol{y}^{(k-1)}\right\|<\varepsilon_{\mathrm{cvg}}
\end{aligned}
$$

Alternate Projections Algorithm

$\mathcal{X}=\prod_{n} \mathcal{X}_{n} \quad$ and $\quad \mathcal{Y}=\mathcal{Y}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} \boldsymbol{x}_{n}=\boldsymbol{p}\right\}$

Require: $\boldsymbol{y}^{(0)}, k=0, \varepsilon_{\mathrm{cvg}},\|$. repeat

$$
\begin{aligned}
& \boldsymbol{x}^{(k+1)} \leftarrow P_{\mathcal{X}}\left(\boldsymbol{y}^{(k)}\right) \\
& \boldsymbol{y}^{(k+1)} \leftarrow P_{\mathcal{Y}}\left(\boldsymbol{x}^{(k+1)}\right) \\
& k \leftarrow k+1 \\
& \text { until }\left\|\boldsymbol{y}^{(k)}-\boldsymbol{y}^{(k-1)}\right\|<\varepsilon_{\mathrm{cvg}}
\end{aligned}
$$

Alternate Projections Algorithm

$\mathcal{X}=\prod_{n} \mathcal{X}_{n} \quad$ and $\quad \mathcal{Y}=\mathcal{Y}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid \sum_{n \in \mathcal{N}} \boldsymbol{x}_{n}=\boldsymbol{p}\right\}$

Require: $\boldsymbol{y}^{(0)}, k=0, \varepsilon_{\mathrm{cvg}},\|$. repeat

$$
\begin{aligned}
& \boldsymbol{x}^{(k+1)} \leftarrow P_{\mathcal{X}}\left(\boldsymbol{y}^{(k)}\right) \\
& \boldsymbol{y}^{(k+1)} \leftarrow P_{\mathcal{Y}}\left(\boldsymbol{x}^{(k+1)}\right) \\
& k \leftarrow k+1 \\
& \text { until }\left\|\boldsymbol{y}^{(k)}-\boldsymbol{y}^{(k-1)}\right\|<\varepsilon_{\text {cvg }}
\end{aligned}
$$

Theorem (Gubin, Polyak, 1967)

Let \mathcal{X} and \mathcal{Y} be two convex sets with \mathcal{X} bounded, and let $\left(\boldsymbol{x}^{(k)}\right)_{k}$ and $\left(\boldsymbol{y}^{(k)}\right)_{k}$ be the two infinite sequences generated by $A P M$ with $\varepsilon_{c v g}=0$. Then there exists $\boldsymbol{x}^{\infty} \in \mathcal{X}$ and $\boldsymbol{y}^{\infty} \in \mathcal{Y}$ such that:

$$
\begin{align*}
& \boldsymbol{x}^{(k)} \underset{k \rightarrow \infty}{\longrightarrow} \boldsymbol{x}^{\infty}, \quad \boldsymbol{y}^{(k)} \underset{k \rightarrow \infty}{\longrightarrow} \boldsymbol{y}^{\infty} \tag{3a}\\
& \left\|\boldsymbol{x}^{\infty}-\boldsymbol{y}^{\infty}\right\|_{2}=\min _{\boldsymbol{x} \in \mathcal{X}, \boldsymbol{y} \in \mathcal{Y}}\|\boldsymbol{x}-\boldsymbol{y}\|_{2} \tag{3b}
\end{align*}
$$

In particular, if $\mathcal{X} \cap \mathcal{Y} \neq \emptyset$, then $\left(\boldsymbol{x}^{(k)}\right)_{k}$ and $\left(\boldsymbol{y}^{(k)}\right)_{k}$ converge to a same point $\boldsymbol{x}^{\infty} \in \mathcal{X} \cap \mathcal{Y}$.

Theorem (Cut generation from APM limit iterates)

For the sets \mathcal{X} and \mathcal{Y} defined above, and if $\mathcal{X} \cap \mathcal{Y}=\emptyset$, the following sets given by the limit orbit $\left(\boldsymbol{x}^{\infty}, \boldsymbol{y}^{\infty}\right)$ defined in Theorem 2:

Theorem (Cut generation from APM limit iterates)

For the sets \mathcal{X} and \mathcal{Y} defined above, and if $\mathcal{X} \cap \mathcal{Y}=\emptyset$, the following sets given by the limit orbit $\left(\boldsymbol{x}^{\infty}, \boldsymbol{y}^{\infty}\right)$ defined in Theorem 2:

$$
\begin{equation*}
\mathcal{T}_{0} \stackrel{\text { def }}{=}\left\{t \mid p_{t}>\sum_{n \in \mathcal{N}} x_{n, t}^{\infty}\right\} \tag{4a}
\end{equation*}
$$

Theorem (Cut generation from APM limit iterates)

For the sets \mathcal{X} and \mathcal{Y} defined above, and if $\mathcal{X} \cap \mathcal{Y}=\emptyset$, the following sets given by the limit orbit $\left(\boldsymbol{x}^{\infty}, \boldsymbol{y}^{\infty}\right)$ defined in Theorem 2:

$$
\begin{align*}
& \mathcal{T}_{0} \stackrel{\text { def }}{=}\left\{t \mid p_{t}>\sum_{n \in \mathcal{N}} x_{n, t}^{\infty}\right\} \tag{4a}\\
& \mathcal{N}_{0} \stackrel{\text { def }}{=}\left\{n \mid E_{n}-\sum_{t \notin \mathcal{T}_{0}} \underline{x}_{n, t}-\sum_{t \in \mathcal{T}_{0}} \bar{x}_{n, t}<0\right\} \tag{4b}
\end{align*}
$$

Theorem (Cut generation from APM limit iterates)

For the sets \mathcal{X} and \mathcal{Y} defined above, and if $\mathcal{X} \cap \mathcal{Y}=\emptyset$, the following sets given by the limit orbit $\left(\boldsymbol{x}^{\infty}, \boldsymbol{y}^{\infty}\right)$ defined in Theorem 2:

$$
\begin{align*}
& \mathcal{T}_{0} \stackrel{\text { def }}{=}\left\{t \mid p_{t}>\sum_{n \in \mathcal{N}} x_{n, t}^{\infty}\right\} \tag{4a}\\
& \mathcal{N}_{0} \stackrel{\text { def }}{=}\left\{n \mid E_{n}-\sum_{t \notin \mathcal{T}_{0}} \underline{x}_{n, t}-\sum_{t \in \mathcal{T}_{0}} \bar{x}_{n, t}<0\right\} \tag{4b}
\end{align*}
$$

define a "Hoffman cut" violated by \boldsymbol{p}, that is:

$$
\begin{equation*}
\sum_{n \in \mathcal{N}_{0}} E_{n}+\sum_{t \in \mathcal{T}_{0}, n \notin \mathcal{N}_{0}} \bar{x}_{n, t}-\sum_{t \notin \mathcal{T}_{0}, n \in \mathcal{N}_{0}} \underline{x}_{n, t}<\sum_{t \in \mathcal{T}_{0}} p_{t} . \tag{5}
\end{equation*}
$$

Theorem (Cut generation from APM limit iterates)

For the sets \mathcal{X} and \mathcal{Y} defined above, and if $\mathcal{X} \cap \mathcal{Y}=\emptyset$, the following sets given by the limit orbit $\left(\boldsymbol{x}^{\infty}, \boldsymbol{y}^{\infty}\right)$ defined in Theorem 2:

$$
\begin{align*}
& \mathcal{T}_{0} \stackrel{\text { def }}{=}\left\{t \mid p_{t}>\sum_{n \in \mathcal{N}} x_{n, t}^{\infty}\right\} \tag{4a}\\
& \mathcal{N}_{0} \stackrel{\text { def }}{=}\left\{n \mid E_{n}-\sum_{t \notin \mathcal{T}_{0}} \underline{x}_{n, t}-\sum_{t \in \mathcal{T}_{0}} \bar{x}_{n, t}<0\right\} \tag{4b}
\end{align*}
$$

define a "Hoffman cut" violated by \boldsymbol{p}, that is:

$$
\begin{equation*}
\sum_{n \in \mathcal{N}_{0}} E_{n}+\sum_{t \in \mathcal{T}_{0}, n \notin \mathcal{N}_{0}} \bar{x}_{n, t}-\sum_{t \notin \mathcal{T}_{0}, n \in \mathcal{N}_{0}} \underline{x}_{n, t}<\sum_{t \in \mathcal{T}_{0}} p_{t} \tag{5}
\end{equation*}
$$

This cut can be reformulated in terms of $\mathbb{1}_{N}^{\top} \boldsymbol{x}^{\infty}$ as:

$$
\begin{equation*}
\mathrm{A}_{\mathcal{T}_{0}}<\sum_{t \in \mathcal{T}_{0}} p_{t} \text { with } \mathrm{A}_{\mathcal{T}_{0}} \stackrel{\text { def }}{=} \sum_{t \in \mathcal{T}_{0}} \sum_{n \in \mathcal{N}} x_{n, t}^{\infty} \text {. } \tag{6}
\end{equation*}
$$

Linear convergence of APM in our case

Theorem

For the sets \mathcal{X} and \mathcal{Y} defined above, the two subsequences of $A P\left(x^{(k)}\right)_{k}$ and $\left(\boldsymbol{y}^{(k)}\right)_{k}$ converge at a geometric rate to $\boldsymbol{x}^{\infty} \in \mathcal{X}, \boldsymbol{y}^{\infty} \in \mathcal{Y}$, with:

$$
\begin{array}{r}
\left\|\boldsymbol{x}^{(k)}-\boldsymbol{x}^{\infty}\right\|_{2} \leq 2\left\|\boldsymbol{x}^{(0)}-\boldsymbol{x}^{\infty}\right\|_{2} \times \rho_{N T}^{k} \\
\text { where } \rho_{N T} \stackrel{\text { def }}{=} 1-\frac{4}{N(T+1)^{2}(T-1)}<1,
\end{array}
$$

Same inequalities hold for the convergence of $\boldsymbol{y}^{(k)}$ to \boldsymbol{y}^{∞}.

Some Ingredients...

Lemma (Nishihara et al, 2014)

For APM on polyhedra \mathcal{X} and \mathcal{Y}, the sequences $\left(\boldsymbol{x}^{(k}\right)_{k}$ and $\left(\boldsymbol{y}^{(k}\right)_{k}$ converge at a geometric rate, where the rate is bounded by the maximal value of the square of the cosine of the Friedrichs angle $c_{F}(U, V)$ between a face U of \mathcal{X} and a face V of \mathcal{Y}, where $c_{F}(U, V)$ is given by:

$$
\begin{aligned}
& c_{F}(U, V)=\sup \left\{u^{T} v \mid\|u\| \leq 1,\|v\| \leq 1\right. \\
& \left.\quad u \in U \cap(U \cap V)^{\perp}, v \in V \cap(U \cap V)^{\perp}\right\} .
\end{aligned}
$$

Some Ingredients...

Lemma (Nishihara et al, 2014)

For APM on polyhedra \mathcal{X} and \mathcal{Y}, the sequences $\left(\boldsymbol{x}^{(k}\right)_{k}$ and $\left(\boldsymbol{y}^{(k}\right)_{k}$ converge at a geometric rate, where the rate is bounded by the maximal value of the square of the cosine of the Friedrichs angle $c_{F}(U, V)$ between a face U of \mathcal{X} and a face V of \mathcal{Y}, where $c_{F}(U, V)$ is given by:

$$
\begin{aligned}
& c_{F}(U, V)=\sup \left\{u^{T} v \mid\|u\| \leq 1,\|v\| \leq 1\right. \\
& \left.\quad u \in U \cap(U \cap V)^{\perp}, v \in V \cap(U \cap V)^{\perp}\right\} .
\end{aligned}
$$

Lemma (Nishihara et al, 2014)

Let A and B be matrices with orthonormal rows and with equal numbers of columns and $\Lambda_{\mathrm{sv}}\left(A B^{\top}\right)$ the set of singular values of $A B^{\top}$. Then:

- if $\Lambda_{\mathrm{sv}}\left(A B^{\top}\right)=\{1\}$, then $c_{F}(\operatorname{Ker}(\mathrm{~A}), \operatorname{Ker}(\mathrm{B}))=0$;
- Otherwise, $c_{F}(\operatorname{Ker}(A), \operatorname{Ker}(B))=\max _{\lambda<1}\left\{\lambda \in \Lambda_{\mathrm{sv}}\left(\mathrm{AB}^{\top}\right)\right\}$.

Convergence rate: sketch of proof -2 :

- \mathcal{Y} is affine subspace $\mathcal{Y}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid A \boldsymbol{x}=\sqrt{N}^{-1} \mathbf{1}_{T}\right\}$ with $\overrightarrow{\mathcal{Y}}=\operatorname{Ker}(A)$ and $A \stackrel{\text { def }}{=} \sqrt{N}^{-1} J_{1, N} \otimes I_{T}$.

Convergence rate: sketch of proof -2 :

- \mathcal{Y} is affine subspace $\mathcal{Y}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid A \boldsymbol{x}=\sqrt{N}^{-1} \mathbf{1}_{T}\right\}$ with $\overrightarrow{\mathcal{Y}}=\operatorname{Ker}(A)$ and $A \stackrel{\text { def }}{=} \sqrt{N}^{-1} J_{1, N} \otimes I_{T}$.
- Faces of \mathcal{X} are subsets of the collection of affine subspaces indexed by $\left(\overline{\mathcal{T}}_{n}, \mathcal{\mathcal { T }}_{n}\right)_{n} \subset \mathcal{T}^{N}$ (with $\overline{\mathcal{T}} \cap \mathcal{T}=\emptyset$):

$$
\mathcal{A}_{\left(\overline{\mathcal{T}}_{n}, \mathcal{\mathcal { I }}_{n}\right)_{n}} \stackrel{\text { def }}{=}\left\{(\boldsymbol{x})_{n t} \mid \forall n, \boldsymbol{x}_{n}^{\top} \mathbb{1}_{T}=E_{n} \text { and } \forall t \in \overline{\mathcal{T}}_{n}, x_{n, t}=\underline{x}_{n, t} \text {, and } \forall t \in \underline{\mathcal{I}}_{n}, x_{n, t}=\bar{x}_{n, t}\right\} .
$$

Direction is $\operatorname{Ker}(\mathrm{B})$, with $[B]_{[N]} \stackrel{\text { def }}{=} \sqrt{T^{-1}} I_{N} \otimes J_{1, T}$.

Convergence rate: sketch of proof -2 :

- \mathcal{Y} is affine subspace $\mathcal{Y}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid A \boldsymbol{x}=\sqrt{N}^{-1} \mathbf{1}_{T}\right\}$ with $\overrightarrow{\mathcal{Y}}=\operatorname{Ker}(A)$ and $A \stackrel{\text { def }}{=} \sqrt{N}^{-1} J_{1, N} \otimes I_{T}$.
- Faces of \mathcal{X} are subsets of the collection of affine subspaces indexed by $\left(\overline{\mathcal{T}}_{n}, \mathcal{\mathcal { T }}_{n}\right)_{n} \subset \mathcal{T}^{N}$ (with $\left.\overline{\mathcal{T}} \cap \mathcal{T}=\emptyset\right)$:
$\mathcal{A}_{\left(\overline{\mathcal{T}}_{n}, \mathcal{I}_{n}\right)_{n}} \stackrel{\text { def }}{=}\left\{(\boldsymbol{x})_{n t} \mid \forall n, \boldsymbol{x}_{n}^{\top} \mathbb{1}_{T}=E_{n}\right.$ and $\forall t \in \overline{\mathcal{T}}_{n}, x_{n, t}=\underline{x}_{n, t}$, and $\left.\forall t \in \underline{\mathcal{I}}_{n}, x_{n, t}=\bar{x}_{n, t}\right\}$.
Direction is $\operatorname{Ker}(\mathrm{B})$, with $[B]_{[N]} \stackrel{\text { def }}{=} \sqrt{T}{ }^{-1} I_{N} \otimes J_{1, T}$.
- We denote by $K_{n} \stackrel{\text { def }}{=} \operatorname{card}\left(\mathcal{T}_{n}\right)$. Renormalizing B, we show:

$$
S:=\left(A B^{\top}\right)\left(A^{\top} B\right)=\frac{1}{N}\left(\sum_{n} \frac{\mathbb{1}_{\{k, \ell\} \subset \mathcal{T}_{n}^{c}}}{T-K_{n}}\right)_{k, \ell}+\frac{1}{N} \sum_{1 \leq t \leq T}\left(\sum_{n} \mathbb{1}_{t \in \mathcal{T}_{n}}\right) E_{t, t} .
$$

Convergence rate: sketch of proof -2 :

- \mathcal{Y} is affine subspace $\mathcal{Y}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid A \boldsymbol{x}=\sqrt{N}^{-1} \mathbf{1}_{T}\right\}$ with $\overrightarrow{\mathcal{Y}}=\operatorname{Ker}(A)$ and $A \stackrel{\text { def }}{=} \sqrt{N}^{-1} J_{1, N} \otimes I_{T}$.
- Faces of \mathcal{X} are subsets of the collection of affine subspaces indexed by $\left(\overline{\mathcal{T}}_{n}, \mathcal{\mathcal { T }}_{n}\right)_{n} \subset \mathcal{T}^{N}$ (with $\left.\overline{\mathcal{T}} \cap \mathcal{T}=\emptyset\right)$:

$$
\mathcal{A}_{\left(\overline{\mathcal{T}}_{n}, \mathcal{I}_{n}\right)_{n}} \stackrel{\text { def }}{=}\left\{(\boldsymbol{x})_{n t} \mid \forall n, \boldsymbol{x}_{n}^{\top} \mathbb{1}_{T}=E_{n} \text { and } \forall t \in \overline{\mathcal{T}}_{n}, x_{n, t}=\underline{x}_{n, t} \text {, and } \forall t \in \underline{\mathcal{I}}_{n}, x_{n, t}=\bar{x}_{n, t}\right\} .
$$

Direction is $\operatorname{Ker}(\mathrm{B})$, with $[B]_{[N]} \stackrel{\text { def }}{=} \sqrt{T}{ }^{-1} I_{N} \otimes J_{1, T}$.

- We denote by $K_{n} \stackrel{\text { def }}{=} \operatorname{card}\left(\mathcal{T}_{n}\right)$. Renormalizing B, we show:

$$
S:=\left(A B^{\top}\right)\left(A^{\top} B\right)=\frac{1}{N}\left(\sum_{n} \frac{\mathbb{1}_{\{k, \ell\} \subset \mathcal{T}_{n}^{c}}}{T-K_{n}}\right)_{k, \ell}+\frac{1}{N} \sum_{1 \leq t \leq T}\left(\sum_{n} \mathbb{1}_{t \in \mathcal{T}_{n}}\right) E_{t, t} .
$$

- Denote $\overline{\mathcal{T}} \stackrel{\text { def }}{=} \cup_{n} \mathcal{T}_{n}^{c}$ and $P \stackrel{\text { def }}{=} I_{T}-S$. Then $P=\operatorname{diag}\left(P_{\overline{\mathcal{T}}}, 0_{\overline{\mathcal{T}} c}\right)$
\rightarrow restrict to $\operatorname{Vect}\left(e_{t}\right)_{t \in \overline{\mathcal{T}}}$ to find $\lambda_{1}(P)$ (least positive eigval)

Convergence rate: sketch of proof - 3 :

- Consider graph $\mathcal{G}=(\overline{\mathcal{T}}, \mathcal{E})$ whose vertices set is $\overline{\mathcal{T}}$ and edge (k, ℓ) has weight $S_{k, \ell}=\frac{1}{N} \sum_{n} \frac{\mathbb{1}_{\{k, \ell\} \subset \mathcal{T}_{n}^{c}}}{T-K_{n}}$. One can show that $\sum_{\ell \neq k}-P_{k, \ell}=P_{k k}$ $\rightarrow P$ is Laplacian matrix of \mathcal{G}.

Convergence rate: sketch of proof - 3 :

- Consider graph $\mathcal{G}=(\overline{\mathcal{T}}, \mathcal{E})$ whose vertices set is $\overline{\mathcal{T}}$ and edge (k, ℓ) has weight $S_{k, \ell}=\frac{1}{N} \sum_{n} \frac{\mathbb{1}_{\{k, \ell\} \subset \tau_{n}^{c}}}{T-K_{n}}$. One can show that $\sum_{\ell \neq k}-P_{k, \ell}=P_{k k}$ $\rightarrow P$ is Laplacian matrix of \mathcal{G}.
- Using Laplacian property and Cauchy-Schwartz, $\forall u \perp 1$:

$$
u^{\top} P u \geq \min _{k, \ell \in\left(s^{*}-t^{*}\right)}\left(-P_{k, \ell} \frac{\left(u_{t^{*}}-u_{s^{*}}\right)^{2}}{d_{s^{*}}, t^{*}} \geq \frac{4 T\|u\|_{2}^{2}}{N(T+1)^{2}(T-1)^{2}}\right.
$$

where $u_{t^{*}}:=\max _{t} u_{t}, u_{s^{*}}:=\min _{t} u_{t}$ and $d_{s^{*}, t^{*}}$ distance in \mathcal{G}, and $\left(s^{*}-t^{*}\right)$ a path from s^{*} to t^{*}.

Convergence rate: sketch of proof - 3 :

- Consider graph $\mathcal{G}=(\overline{\mathcal{T}}, \mathcal{E})$ whose vertices set is $\overline{\mathcal{T}}$ and edge (k, ℓ) has weight $S_{k, \ell}=\frac{1}{N} \sum_{n} \frac{\mathbb{1}_{\{k, \ell\} \subset \tau_{n}^{c}}}{T-K_{n}}$. One can show that $\sum_{\ell \neq k}-P_{k, \ell}=P_{k k}$ $\rightarrow P$ is Laplacian matrix of \mathcal{G}.
- Using Laplacian property and Cauchy-Schwartz, $\forall u \perp 1$:

$$
u^{\top} P u \geq \min _{k, \ell \in\left(s^{*}-t^{*}\right)}\left(-P_{k, \ell} \frac{\left(u_{*^{*}}-u_{s^{*}}\right)^{2}}{d_{s^{*}, t^{*}}} \geq \frac{4 T\|u\|_{2}^{2}}{N(T+1)^{2}(T-1)^{2}}\right.
$$

where $u_{t^{*}}:=\max _{t} u_{t}, u_{s^{*}}:=\min _{t} u_{t}$ and $d_{s^{*}, t^{*}}$ distance in \mathcal{G}, and $\left(s^{*}-t^{*}\right)$ a path from s^{*} to t^{*}.

- As $\mathbf{1}$ is an eigenvector of P associated to $\lambda_{0}=0$, from the minmax theorem, we get $\lambda_{1}(P) \geq \frac{4}{N(T+1)^{2}(T-1)}:=1-\rho_{N T}$

back to the two subproblems...

Master Problem
$\min _{\boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p})$
s.t. $\boldsymbol{p} \in \mathcal{P}^{(s)}$

Disaggregation Problem

$$
\text { FIND } x \in \mathcal{Y}_{\boldsymbol{p}} \cap\left(\prod_{n} \mathcal{X}_{n}\right)
$$

back to the two subproblems...

back to the two subproblems...

back to the two subproblems...

Master Problem $\begin{aligned} & \min _{\boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) \\ & \text { s.t. } \boldsymbol{p} \in \mathcal{P}^{(s)} \end{aligned}$	$\xrightarrow[\mathcal{P}^{(s+1)}]{\boldsymbol{p}^{(s)}}$	Disaggregation Problem $\text { FIND } \boldsymbol{x} \in \mathcal{Y}_{\boldsymbol{p}} \cap\left(\prod_{n} \mathcal{X}_{n}\right)$
$\mathcal{P}^{(s+1)}=\mathcal{P}^{(s)} \cap\left\{\boldsymbol{p} \mid \quad \mathrm{A}_{\mathcal{T}_{0}}<\sum_{t \in \mathcal{T}_{0}} p_{t}\right\}$		

To non-intrusive projections...

- projections $\boldsymbol{x}_{n}=P_{\mathcal{X}_{n}}\left(\boldsymbol{y}_{n}\right)$ can be computed locally ;

To non-intrusive projections...

- projections $\boldsymbol{x}_{n}=P_{\mathcal{X}_{n}}\left(\boldsymbol{y}_{n}\right)$ can be computed locally ;
- projection $\boldsymbol{y}=P_{\mathcal{Y}_{p}}(\boldsymbol{x})$ on $\mathcal{Y}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid \sum_{n} \boldsymbol{x}_{n}=\boldsymbol{p}\right\}$ is explicit (affine space):

$$
\forall n, \boldsymbol{y}_{n}=\boldsymbol{x}_{n}+\frac{1}{N}\left(\boldsymbol{p}-\left(\sum_{m} \boldsymbol{x}_{m}\right)\right)
$$

To non-intrusive projections...

- projections $\boldsymbol{x}_{n}=P_{\mathcal{X}_{n}}\left(\boldsymbol{y}_{n}\right)$ can be computed locally ;
- projection $\boldsymbol{y}=P_{\mathcal{Y}_{p}}(\boldsymbol{x})$ on $\mathcal{Y}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid \sum_{n} \boldsymbol{x}_{n}=\boldsymbol{p}\right\}$ is explicit (affine space):

$$
\forall n, \boldsymbol{y}_{n}=\boldsymbol{x}_{n}+\frac{1}{N}\left(\boldsymbol{p}-\left(\sum_{m} \boldsymbol{x}_{m}\right)\right)
$$

- only requires the aggregate quantity $\sum_{n} x_{n}$, then local operations;

To non-intrusive projections...

- projections $\boldsymbol{x}_{n}=P_{\mathcal{X}_{n}}\left(\boldsymbol{y}_{n}\right)$ can be computed locally ;
- projection $\boldsymbol{y}=P_{\mathcal{Y}_{p}}(\boldsymbol{x})$ on $\mathcal{Y}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{R}^{N T} \mid \sum_{n} \boldsymbol{x}_{n}=\boldsymbol{p}\right\}$ is explicit (affine space):

$$
\forall n, \boldsymbol{y}_{n}=\boldsymbol{x}_{n}+\frac{1}{N}\left(\boldsymbol{p}-\left(\sum_{m} \boldsymbol{x}_{m}\right)\right) ;
$$

- only requires the aggregate quantity $\sum_{n} x_{n}$, then local operations;

How can we compute $\sum_{n} x_{n}$ without disclosing profiles to Big Brother ?

Issues: transmission of profiles for projection

In APM, agents still have to provide profiles $\left(x_{n}^{(k)}\right)_{n}$
\rightarrow Secure Multiparty Computation (SMC) principle
Require: Each agent has a profile $\left(x_{n}\right)_{n \in \mathcal{N}}$
1: for each agent $n \in \mathcal{N}$ do
2: \quad Draw $\forall t,\left(s_{n, t, m}\right)_{m=1}^{N-1} \in \mathcal{U}\left([0, A]^{N-1}\right)$
3: and set $\forall t, s_{n, t, N} \stackrel{\text { def }}{=} x_{n, t}-\sum_{m=1}^{N-1} s_{n, t, m}$
4: \quad Send $\left(s_{n, t, m}\right)_{t \in \mathcal{T}}$ to agent $m \in \mathcal{N}$
done
for each agent $n \in \mathcal{N}$ do
Compute $\forall t, \sigma_{n, t}=\sum_{m \in \mathcal{N}} s_{m, t, n}$
Send $\left(\sigma_{n, t}\right)_{t \in \mathcal{T}}$ to operator
9: done
10: Operator computes $\boldsymbol{S}=\sum_{n \in \mathcal{N}} \sigma_{n}$

Issues: transmission of profiles for projection

In APM, agents still have to provide profiles $\left(x_{n}^{(k)}\right)_{n}$
\rightarrow Secure Multiparty Computation (SMC) principle
Require: Each agent has a profile $\left(x_{n}\right)_{n \in \mathcal{N}}$
1: for each agent $n \in \mathcal{N}$ do
2: \quad Draw $\forall t,\left(s_{n, t, m}\right)_{m=1}^{N-1} \in \mathcal{U}\left([0, A]^{N-1}\right)$
3: and set $\forall t, s_{n, t, N} \stackrel{\text { def }}{=} x_{n, t}-\sum_{m=1}^{N-1} s_{n, t, m}$
4: \quad Send $\left(s_{n, t, m}\right)_{t \in \mathcal{T}}$ to agent $m \in \mathcal{N}$
done

$$
\begin{aligned}
& x_{1}=s_{1,1}+s_{1,2}+s_{1,3} \\
& x_{2}=s_{2,1}+s_{2,2}+s_{2,3} \\
& x_{3}=s_{3,1}+s_{3,2}+s_{3,3}
\end{aligned}
$$

for each agent $n \in \mathcal{N}$ do
Compute $\forall t, \sigma_{n, t}=\sum_{m \in \mathcal{N}} s_{m, t, n}$
Send $\left(\sigma_{n, t}\right)_{t \in \mathcal{T}}$ to operator
9: done
10: Operator computes $S=\sum_{n \in \mathcal{N}} \sigma_{n}$

Issues: transmission of profiles for projection

In APM, agents still have to provide profiles $\left(x_{n}^{(k)}\right)_{n}$
\rightarrow Secure Multiparty Computation (SMC) principle
Require: Each agent has a profile $\left(x_{n}\right)_{n \in \mathcal{N}}$
1: for each agent $n \in \mathcal{N}$ do
2: \quad Draw $\forall t,\left(s_{n, t, m}\right)_{m=1}^{N-1} \in \mathcal{U}\left([0, A]^{N-1}\right)$
3: and set $\forall t, s_{n, t, N} \stackrel{\text { def }}{=} x_{n, t}-\sum_{m=1}^{N-1} s_{n, t, m}$

$$
\begin{aligned}
& x_{1}=s_{1,1}+s_{1,2}+s_{1,3} \\
& x_{2}=s_{2,1}+s_{2,2}+s_{2,3} \\
& x_{3}=s_{3,1}+s_{3,2}+s_{3,3} \\
& \sum_{n} x_{n}=\sigma_{1}+\sigma_{2}+\sigma_{3}
\end{aligned}
$$

Send $\left(s_{n, t, m}\right)_{t \in \mathcal{T}}$ to agent $m \in \mathcal{N}$
done
for each agent $n \in \mathcal{N}$ do
7: \quad Compute $\forall t, \sigma_{n, t}=\sum_{m \in \mathcal{N}} s_{m, t, n}$
8: \quad Send $\left(\sigma_{n, t}\right)_{t \in \mathcal{T}}$ to operator
9: done
10: Operator computes $\boldsymbol{S}=\sum_{n \in \mathcal{N}} \sigma_{n}$

Combining all elements...

Require: $s=0, \mathcal{P}^{(0)}=\mathcal{P}$; DISAG $=$ FALSE
1: while Not Disag do

Combining all elements...

Require: $s=0, \mathcal{P}^{(0)}=\mathcal{P}$; DISAG $=$ FALSE
1: while Not Disag do
2: \quad Compute $\boldsymbol{p}^{(s)}=\arg \min _{\boldsymbol{p} \in \mathcal{P}_{\mathrm{cs}}^{(s)}} \boldsymbol{p}$

Master Problem

$$
\begin{aligned}
& \min _{\boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) \\
& \text { s.t. } \boldsymbol{p} \in \mathcal{P}^{(s)}
\end{aligned}
$$

Combining all elements...

Require: $s=0, \mathcal{P}^{(0)}=\mathcal{P} ;$ DISAG $=$ FALSE
1: while Not Disag do
2: \quad Compute $\boldsymbol{p}^{(s)}=\arg \min _{\boldsymbol{p} \in \mathcal{P}_{c s}^{(s)}} \boldsymbol{p}$
3: \quad DISAG $\leftarrow \operatorname{APM}\left(\boldsymbol{p}^{(s)}\right)$

Master Problem

$$
\begin{aligned}
& \min _{\boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) \\
& \text { s.t. } \boldsymbol{p} \in \mathcal{P}^{(s)}
\end{aligned}
$$

$\boldsymbol{p}^{(s)}$

Disaggregation Pb

Find $x \in \mathcal{Y}_{\boldsymbol{p}} \cap\left(\prod_{n} \mathcal{X}_{n}\right)$

Combining all elements...

Require: $s=0, \mathcal{P}^{(0)}=\mathcal{P}$; DISAG $=$ FALSE
1: while Not Disag do
2: \quad Compute $\boldsymbol{p}^{(s)}=\arg \min _{\boldsymbol{p} \in \mathcal{P}_{\text {cs }}^{(s)}} \boldsymbol{p}$
3: \quad DISAG $\leftarrow \operatorname{APM}\left(\boldsymbol{p}^{(s)}\right)$
4: if DISAG then
5: \quad Operator adopts $\boldsymbol{p}^{(s)}$

Master Problem

$$
\begin{aligned}
& \min _{\boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) \\
& \text { s.t. } \boldsymbol{p} \in \mathcal{P}^{(s)}
\end{aligned}
$$

$\boldsymbol{p}^{(s)}$

Disaggregation Pb

Find $\boldsymbol{x} \in \mathcal{Y}_{\boldsymbol{p}} \cap\left(\prod_{n} \mathcal{X}_{n}\right)$

Combining all elements...

Require: $s=0, \mathcal{P}^{(0)}=\mathcal{P}$; DIAG $=$ FALSE
1: while Not Disag do
2: \quad Compute $\boldsymbol{p}^{(s)}=\arg \min _{\boldsymbol{p} \in \mathcal{P}_{c s}^{(s)}} \boldsymbol{p}$
3: \quad DIAG $\leftarrow \operatorname{APM}\left(\boldsymbol{p}^{(s)}\right)$
4: if DISAG then
5: \quad Operator adopts $\boldsymbol{p}^{(s)}$
6: else
7: \quad Obtain $\mathcal{T}_{0}^{(s)}, \mathrm{A}_{\mathcal{T}_{0}}^{(s)}$ from $\operatorname{APM}\left(\boldsymbol{p}^{(s)}\right)$
8:

$$
\mathcal{P}^{(s+1)} \leftarrow \mathcal{P}^{(s)} \cap\left\{\boldsymbol{p} \mid \sum_{t \in \mathcal{T}_{0}^{(s)}} p_{t} \leq \mathrm{A}_{\mathcal{T}_{0}}^{(s)}\right\}
$$

9: end

Master Problem

$$
\begin{aligned}
& \min _{\boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) \\
& \text { s.t. } \boldsymbol{p} \in \mathcal{P}^{(s)}
\end{aligned}
$$

$$
\mathcal{P}^{(s+1)}
$$

Disaggregation Pb
$\operatorname{Find} x \in \mathcal{Y}_{\boldsymbol{p}} \cap\left(\prod_{n} \mathcal{X}_{n}\right)$

Combining all elements...

Require: $s=0, \mathcal{P}^{(0)}=\mathcal{P}$; DIAG $=$ FALSE
1: while Not Disag do
2: \quad Compute $\boldsymbol{p}^{(s)}=\arg \min _{\boldsymbol{p} \in \mathcal{P}_{c s}^{(s)}} \boldsymbol{p}$
3: \quad DIAG $\leftarrow \operatorname{APM}\left(\boldsymbol{p}^{(s)}\right)$
4: if DISAG then
5: \quad Operator adopts $\boldsymbol{p}^{(s)}$
6: else
7: \quad Obtain $\mathcal{T}_{0}^{(s)}, \mathrm{A}_{\mathcal{T}_{0}}^{(s)}$ from $\operatorname{APM}\left(\boldsymbol{p}^{(s)}\right)$
8:

$$
\mathcal{P}^{(s+1)} \leftarrow \mathcal{P}^{(s)} \cap\left\{\boldsymbol{p} \mid \sum_{t \in \mathcal{T}_{0}^{(s)}} p_{t} \leq \mathrm{A}_{\mathcal{T}_{0}}^{(s)}\right\}
$$

9: end
10: $\quad s \leftarrow s+1$

11: done

Master Problem

$$
\begin{aligned}
& \min _{\boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p}) \\
& \text { s.t. } \boldsymbol{p} \in \mathcal{P}^{(s)}
\end{aligned}
$$

$$
\mathcal{P}^{(s+1)}
$$

Disaggregation Pb
Find $\boldsymbol{x} \in \mathcal{Y}_{\boldsymbol{p}} \cap\left(\prod_{n} \mathcal{X}_{n}\right)$

Termination condition: number of cuts

Proposition

The procedure stops after a finite number of iterations, as at most 2^{T} constraints can be added to the master problem.

Termination condition: number of cuts

Proposition

The procedure stops after a finite number of iterations, as at most 2^{T} constraints can be added to the master problem.

ISSUE: we need the limit \boldsymbol{x}^{∞} of the APM sequence to obtain the cut..

Termination condition: number of cuts

Proposition

The procedure stops after a finite number of iterations, as at most 2^{T} constraints can be added to the master problem.

IsSUE: we need the limit \boldsymbol{x}^{∞} of the APM sequence to obtain the cut.. but in practice we can stop in finite time and obtain the approximated same cut!

Illustrative example in dimension $T=4$ (with $\left.\sum_{t} p_{t}=\sum_{n} E_{n}\right)$

Illustrative example in dimension $T=4$ (with $\sum_{t} p_{t}=\sum_{n} E_{n}$)

Illustrative example in dimension $T=4$ (with $\left.\sum_{t} p_{t}=\sum_{n} E_{n}\right)$

Illustrative example in dimension $T=4$ (with $\sum_{t} p_{t}=\sum_{n} E_{n}$)

Illustrative example in dimension $T=4$ (with $\sum_{t} p_{t}=\sum_{n} E_{n}$)

Master Problem
$\min _{\boldsymbol{p} \in \mathbb{R}^{T}} f(\boldsymbol{p})$
s.t. $\boldsymbol{p} \in \mathcal{P}^{(s)}$
DisAGGREGATION PB
Find $\boldsymbol{x} \in \mathcal{Y}_{\boldsymbol{p}} \cap\left(\prod_{n} \mathcal{X}_{n}\right)$
Feasible!

Conclusion

The method computes a resource allocation \boldsymbol{p} and N individual agents profiles $\left(\boldsymbol{x}_{n}\right)_{n}$, such that ($\boldsymbol{x}, \boldsymbol{p}$) solves the global (nonconvex) problem, while keeping private:

Conclusion

The method computes a resource allocation \boldsymbol{p} and N individual agents profiles $\left(\boldsymbol{x}_{n}\right)_{n}$, such that ($\boldsymbol{x}, \boldsymbol{p}$) solves the global (nonconvex) problem, while keeping private:
(1) agent constraints (upper bounds $\overline{\boldsymbol{x}}_{n}$, lower bounds $\underline{\boldsymbol{x}}_{n}$, demand E_{n});

Conclusion

The method computes a resource allocation \boldsymbol{p} and N individual agents profiles $\left(\boldsymbol{x}_{n}\right)_{n}$, such that ($\boldsymbol{x}, \boldsymbol{p}$) solves the global (nonconvex) problem, while keeping private:
(1) agent constraints (upper bounds $\overline{\boldsymbol{x}}_{n}$, lower bounds $\underline{\boldsymbol{x}}_{n}$, demand E_{n});
(2) individual profile \boldsymbol{x}_{n} (as well as the iterates $\left(\boldsymbol{x}^{(k)}\right)_{k}$ and $\left(\boldsymbol{y}^{(k)}\right)_{k}$ in APM).

Conclusion

The method computes a resource allocation \boldsymbol{p} and N individual agents profiles $\left(\boldsymbol{x}_{n}\right)_{n}$, such that ($\boldsymbol{x}, \boldsymbol{p}$) solves the global (nonconvex) problem, while keeping private:
(1) agent constraints (upper bounds $\overline{\boldsymbol{x}}_{n}$, lower bounds $\underline{\boldsymbol{x}}_{n}$, demand E_{n});
(2) individual profile \boldsymbol{x}_{n} (as well as the iterates $\left(\boldsymbol{x}^{(k)}\right)_{k}$ and $\left(\boldsymbol{y}^{(k)}\right)_{k}$ in APM). Further work and extensions:

Conclusion

The method computes a resource allocation \boldsymbol{p} and N individual agents profiles $\left(\boldsymbol{x}_{n}\right)_{n}$, such that ($\boldsymbol{x}, \boldsymbol{p}$) solves the global (nonconvex) problem, while keeping private:
(1) agent constraints (upper bounds $\overline{\boldsymbol{x}}_{n}$, lower bounds $\underline{\boldsymbol{x}}_{n}$, demand E_{n});
(2) individual profile \boldsymbol{x}_{n} (as well as the iterates $\left(\boldsymbol{x}^{(k)}\right)_{k}$ and $\left(\boldsymbol{y}^{(k)}\right)_{k}$ in APM).

Further work and extensions:

- a variant of the algorithm can deal individual constaints $\mathcal{X}_{n} \rightarrow$ arbitrary (polyhedral) set, resolving local LPs to get a cut;

Conclusion

The method computes a resource allocation \boldsymbol{p} and N individual agents profiles $\left(\boldsymbol{x}_{n}\right)_{n}$, such that ($\boldsymbol{x}, \boldsymbol{p}$) solves the global (nonconvex) problem, while keeping private:
(1) agent constraints (upper bounds $\overline{\boldsymbol{x}}_{n}$, lower bounds $\underline{\boldsymbol{x}}_{n}$, demand E_{n});
(2) individual profile \boldsymbol{x}_{n} (as well as the iterates $\left(\boldsymbol{x}^{(k)}\right)_{k}$ and $\left(\boldsymbol{y}^{(k)}\right)_{k}$ in APM).

Further work and extensions:

- a variant of the algorithm can deal individual constaints $\mathcal{X}_{n} \rightarrow$ arbitrary (polyhedral) set, resolving local LPs to get a cut;
- can we generalize the direct obtention of the cut for other polyhedra?

Conclusion

The method computes a resource allocation \boldsymbol{p} and N individual agents profiles $\left(\boldsymbol{x}_{n}\right)_{n}$, such that ($\boldsymbol{x}, \boldsymbol{p}$) solves the global (nonconvex) problem, while keeping private:
(1) agent constraints (upper bounds $\overline{\boldsymbol{x}}_{n}$, lower bounds $\underline{\boldsymbol{x}}_{n}$, demand E_{n});
(2) individual profile \boldsymbol{x}_{n} (as well as the iterates $\left(\boldsymbol{x}^{(k)}\right)_{k}$ and $\left(\boldsymbol{y}^{(k)}\right)_{k}$ in APM).

Further work and extensions:

- a variant of the algorithm can deal individual constaints $\mathcal{X}_{n} \rightarrow$ arbitrary (polyhedral) set, resolving local LPs to get a cut;
- can we generalize the direct obtention of the cut for other polyhedra?
- analysis on the maximal number of constraints added (polynomial bound ?).

THANKS!

Jacquot, Paulin, Olivier Beaude, Pascal Benchimol, Stéphane Gaubert, and Nadia Oudjane (2019a). "A Privacy-preserving Disaggregation Algorithm for Non-intrusive Management of Flexible Energy". In: IEEE 58th Conference on Decision and Control (CDC). IEEE. arXiv: 1903.03053.

- (2019b). "A Privacy-preserving Method to optimize distributed resource allocation". In: arXiv preprint. arXiv: 1908.03080.

