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Introduction and Context

Two main issues:

dimension: hundreds
or thousands of
users/consumers ;

privacy: users may not
want to disclose
individual constraints
and consumption
profiles to big brother.
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Problem Formulation

min
x∈RN×T, p∈RT

f (p) (1a)

p ∈ P

operator constraints

(1b)∑
n∈N

xn,t = pt , ∀t ∈ T

disaggregation

(1c)

xn ∈ Xn, ∀n ∈ N

agents constraints

(1d)

with Xn
def
=
{
xn∈RT |

∑
t xn,t =En and ∀t, xn,t≤xn,t≤xn,t

}
Ressource allocation problems: many applications in energy, logistics,

distributed computing, healthcare...
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distributed problems are usually addressed by Lagrangian decomposition
approaches . . .

which requires strong duality / convexity hypothesis!

a lot of problems have non convex constraints/ cost functions : our method
does not require convexity.
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Two subproblems

Our method considers two subproblems iteratively:

Master Problem

min
p∈RT

f (p)

s.t. p ∈ P(s) ,

where P(s) ⊂ P

Disaggregation Problem

Find x = (xn)n∈N ∈ Yp ∩ X

where Yp
def
= {y ∈ RNT |

∑
n∈N

yn = p}

and X def
=
∏
n∈N
Xn .

p(s)

P(s+1)
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Disaggregation Feasibility

Characterizing Yp ∩ X = {x ∈ X |
∑

n∈N xn = p}
Necessary aggregated constraints:∑

t

pt =
∑
n

En and ∀t,
∑
n

xn,t ≤ pt ≤
∑
n

xn,t .

Not sufficient!

t = 1p1 = 0

t = 2p2 = 3

1 E1 = 2

2 E2 = 0.5

3 E3 = 0.5

T N
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Disaggregation Feasibility

Characterizing Yp ∩ X = {x ∈ X |
∑

n∈N xn = p}

Theorem (Hoffman Circulation’s Theorem)

Disaggregation is feasible (i.e. X ∩ Yp 6= ∅) iff for any Tin ⊂ T ,Nin ⊂ N :∑
t /∈Tin

pt ≤
∑

t /∈Tin,n∈Nin

xn,t −
∑

t∈Tin,n/∈Nin

xn,t +
∑
n/∈Nin

En. (2)

t = 1p1 = 0

t = 2p2 = 3

1 E1 = 2

2 E2 = 0.5

3 E3 = 0.5

T N
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Alternate Projections Algorithm

X =
∏

n Xn and Y = Yp = {x ∈ RNT |
∑

n∈N xn = p}

Require: y (0), k = 0 , εcvg, ‖.‖
repeat

x (k+1) ← PX (y (k))
y (k+1) ← PY(x (k+1))
k ← k + 1

until
∥∥y (k) − y (k−1)

∥∥ < εcvg

Y

X

x (0)
•

y (0)

x (1)

y (1)

x∞

y∞
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Theorem (Gubin, Polyak, 1967)

Let X and Y be two convex sets with X bounded, and let (x (k))k and (y (k))k be
the two infinite sequences generated by APM with εcvg = 0. Then there exists
x∞ ∈ X and y∞ ∈ Y such that:

x (k) −→
k→∞

x∞ , y (k) −→
k→∞

y∞; (3a)

‖x∞ − y∞‖2 = min
x∈X ,y∈Y

‖x − y‖2 . (3b)

In particular, if X ∩ Y 6= ∅, then (x (k))k and (y (k))k converge to a same point
x∞ ∈ X ∩ Y.
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Theorem (Cut generation from APM limit iterates)

For the sets X and Y defined above, and if X ∩ Y = ∅ , the following sets given
by the limit orbit (x∞, y∞) defined in Theorem 2:

T0
def
= {t|pt >

∑
n∈N x∞n,t}

(4a)

N0
def
= {n |En −

∑
t /∈T0

xn,t −
∑

t∈T0
xn,t < 0}

(4b)

define a “Hoffman cut” violated by p, that is:∑
n∈N0

En +
∑

t∈T0,n/∈N0

xn,t −
∑

t /∈T0,n∈N0

xn,t <
∑
t∈T0

pt . (5)

This cut can be reformulated in terms of 1>Nx∞ as:

AT0<
∑
t∈T0

pt with AT0

def
=
∑
t∈T0

∑
n∈N

x∞n,t . (6)
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Linear convergence of APM in our case

Theorem

For the sets X and Y defined above, the two subsequences of AP (x (k))k and
(y (k))k converge at a geometric rate to x∞ ∈ X , y∞ ∈ Y, with:

‖x (k)− x∞‖2≤2‖x (0)− x∞‖2 × ρkNT

where ρNT
def
= 1− 4

N(T + 1)2(T − 1)
< 1 ,

Same inequalities hold for the convergence of y (k) to y∞.
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Some Ingredients...

Lemma (Nishihara et al, 2014)

For APM on polyhedra X and Y, the sequences (x (k)k and (y (k)k converge at a
geometric rate, where the rate is bounded by the maximal value of the square of
the cosine of the Friedrichs angle cF (U,V ) between a face U of X and a face
V of Y, where cF (U,V ) is given by:

cF (U,V ) = sup{uT v | ‖u‖ ≤ 1, ‖v‖ ≤ 1

u ∈ U ∩ (U ∩ V )⊥, v ∈ V ∩ (U ∩ V )⊥}.

Lemma (Nishihara et al, 2014)

Let A and B be matrices with orthonormal rows and with equal numbers of
columns and Λsv(AB>) the set of singular values of AB>. Then:
- if Λsv(AB>) = {1}, then cF (Ker(A),Ker(B)) = 0 ;
- Otherwise, cF (Ker(A),Ker(B)) = maxλ<1{λ ∈ Λsv(AB>)}.
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Convergence rate: sketch of proof - 2:

Y is affine subspace Y = {x ∈ RNT |Ax =
√
N
−1

1T} with
−→
Y = Ker(A) and

A
def
=
√
N
−1

J1,N ⊗ IT .

Faces of X are subsets of the collection of affine subspaces indexed by
(T n, T n)n ⊂ T N (with T ∩ T = ∅):

A(T n,T n)n

def
=
{

(x)nt |∀n, x>n1T = En and ∀t∈ T n, xn,t = xn,t , and ∀t ∈ T n, xn,t = xn,t
}
.

Direction is Ker(B), with [B][N]
def
=
√
T
−1

IN ⊗ J1,T .

We denote by Kn
def
= card(Tn). Renormalizing B, we show:

S := (AB>)(A>B) =
1

N

(∑
n

1{k,`}⊂T c
n

T − Kn

)
k,`

+
1

N

∑
1≤t≤T

(
∑

n1t∈Tn)Et,t .

Denote T̄ def
= ∪nT c

n and P
def
= IT − S . Then P = diag(PT̄ , 0T̄ c )

→ restrict to Vect(et)t∈T̄ to find λ1(P) (least positive eigval)

Paulin Jacquot (EDF - Inria - CMAP) Privacy-Preserving Disaggregation Algo Lundi 7 octobre 2019 12 / 21
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(
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Convergence rate: sketch of proof - 3:

Consider graph G = (T̄ , E) whose vertices set is T̄ and edge (k, `) has weight

Sk,` = 1
N

∑
n

1{k,`}⊂T c
n

T−Kn
. One can show that

∑
6̀=k −Pk,` = Pkk

→ P is Laplacian matrix of G.

Using Laplacian property and Cauchy-Schwartz, ∀u ⊥ 1:

u>Pu ≥ min
k,`∈(s∗-t∗)

(−Pk,`)
(ut∗−us∗ )2

ds∗,t∗
≥ 4T‖u‖2

2
N(T+1)2(T−1)2

where ut∗ := maxt ut , us∗ := mint ut and ds∗,t∗ distance in G, and (s∗-t∗) a
path from s∗ to t∗.

As 1 is an eigenvector of P associated to λ0 = 0, from the minmax theorem,
we get λ1(P) ≥ 4

N(T+1)2(T−1)
:= 1− ρNT
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back to the two subproblems...

Master Problem

min
p∈RT

f (p)

s.t. p ∈ P(s)

Disaggregation Problem

Find x ∈ Yp ∩ (
∏

n Xn)

p(s)

P(s+1)

P(s+1) = P(s) ∩ {p| AT0 <
∑

t∈T0
pt}

Paulin Jacquot (EDF - Inria - CMAP) Privacy-Preserving Disaggregation Algo Lundi 7 octobre 2019 14 / 21



back to the two subproblems...

Master Problem

min
p∈RT

f (p)

s.t. p ∈ P(s)

Disaggregation Problem

Find x ∈ Yp ∩ (
∏

n Xn)

p(s)

P(s+1)

P(s+1) = P(s) ∩ {p| AT0 <
∑

t∈T0
pt}

Paulin Jacquot (EDF - Inria - CMAP) Privacy-Preserving Disaggregation Algo Lundi 7 octobre 2019 14 / 21



back to the two subproblems...

Master Problem

min
p∈RT

f (p)

s.t. p ∈ P(s)

Disaggregation Problem

Find x ∈ Yp ∩ (
∏

n Xn)

p(s)

P(s+1)

P(s+1) = P(s) ∩ {p| AT0 <
∑

t∈T0
pt}

Paulin Jacquot (EDF - Inria - CMAP) Privacy-Preserving Disaggregation Algo Lundi 7 octobre 2019 14 / 21



back to the two subproblems...

Master Problem

min
p∈RT

f (p)

s.t. p ∈ P(s)

Disaggregation Problem

Find x ∈ Yp ∩ (
∏

n Xn)

p(s)

P(s+1)

P(s+1) = P(s) ∩ {p| AT0 <
∑

t∈T0
pt}

Paulin Jacquot (EDF - Inria - CMAP) Privacy-Preserving Disaggregation Algo Lundi 7 octobre 2019 14 / 21



To non-intrusive projections...

projections xn = PXn(yn) can be computed locally ;

projection y = PYp (x) on Yp = {x ∈ RNT |
∑

n xn = p} is explicit (affine
space):

∀n, yn = xn + 1
N

(
p − (

∑
m xm)

)
;

only requires the aggregate quantity
∑

n xn , then local operations;

How can we compute
∑

n xn without disclosing profiles to Big Brother ?
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Issues: transmission of profiles for projection

In APM, agents still have to provide profiles (x (k)
n )n

→ Secure Multiparty Computation (SMC) principle

Require: Each agent has a profile (xn)n∈N
1: for each agent n ∈ N do
2: Draw ∀t, (sn,t,m)N−1

m=1∈U([0,A]N−1)

3: and set ∀t, sn,t,N
def
= xn,t −

∑N−1
m=1 sn,t,m

4: Send (sn,t,m)t∈T to agent m ∈ N
5: done
6: for each agent n ∈ N do
7: Compute ∀t, σn,t =

∑
m∈N sm,t,n

8: Send (σn,t)t∈T to operator
9: done

10: Operator computes S =
∑

n∈N σn
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x2 = s2,1 + s2,2 + s2,3

x3 = s3,1 + s3,2 + s3,3
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Combining all elements...

Require: s = 0 , P(0) = P ; Disag = False
1: while Not Disag do

2: Compute p(s) = arg minp∈P(s)
cs

p

3: Disag ← APM(p(s))
4: if Disag then
5: Operator adopts p(s)

6: else
7: Obtain T (s)

0 ,A
(s)
T0

from APM(p(s))

8: P(s+1) ← P(s)∩{p|
∑

t∈T (s)
0

pt ≤ A
(s)
T0
}

9: end
10: s ← s + 1
11: done

Master Problem

min
p∈RT

f (p)

s.t. p ∈ P(s)

Disaggregation Pb

Find x ∈ Yp ∩ (
∏

n Xn)

p(s)P(s+1)
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Termination condition: number of cuts

Proposition

The procedure stops after a finite number of iterations, as at most 2T constraints
can be added to the master problem.

Issue: we need the limit x∞ of the APM sequence to obtain the cut..
but in practice we can stop in finite time and obtain the approximated same cut!
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Illustrative example in dimension T = 4 (with
∑

t pt =
∑

n En)

p1

p2

p3

p(1)

Master Problem

min
p∈RT

f (p)

s.t. p ∈ P(s)

Disaggregation Pb

Find x ∈ Yp ∩ (
∏

n Xn)

p(1)P(2)
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Conclusion

The method computes a resource allocation p and N individual agents profiles
(xn)n, such that (x ,p) solves the global (nonconvex) problem, while keeping
private:

1 agent constraints (upper bounds xn, lower bounds xn, demand En);

2 individual profile xn (as well as the iterates (x (k))k and (y (k))k in APM).

Further work and extensions:

a variant of the algorithm can deal individual constaints Xn → arbitrary
(polyhedral) set, resolving local LPs to get a cut;

can we generalize the direct obtention of the cut for other polyhedra ?

analysis on the maximal number of constraints added (polynomial bound ?).
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a variant of the algorithm can deal individual constaints Xn → arbitrary
(polyhedral) set, resolving local LPs to get a cut;

can we generalize the direct obtention of the cut for other polyhedra ?

analysis on the maximal number of constraints added (polynomial bound ?).
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