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Nonatomic Aggregative Games

Definition (Nonatomic aggregative game)

A nonatomic aggregative game G is defined by:
i) a continuum of players represented by the points on the real interval Θ = [0, 1]
endowed with Lebesgue measure;

ii) a set of feasible pure actions Xθ ⊂ RT for each player θ ∈ Θ, with T ∈ N∗ ;
iii) a cost function Xθ × RT → R : (xθ,X) 7→ fθ(xθ,X) for each player θ, where
X = (Xt)T

t=1 and Xt ,
∫ 1

0 xθ′,t dθ′ refers to an aggregate-action profile, given
action profile (xθ′)θ′∈Θ for the population Θ.
The set of feasible pure-action profiles is defined by:

X ,
{

x ∈ L2([0, 1],RT ) : ∀ θ ∈ Θ, xθ ∈ Xθ
}
.
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Assumptions I

Assumption (Nonatomic pure-action sets)

The correspondence X : Θ⇒ RT , θ 7→ Xθ has nonempty, convex, compact values.
Moreover, for all θ ∈ Θ, Xθ ⊂ BR(0), with R > 0 a constant.

Assumption (Measurability)

The correspondence X : Θ⇒ RT , θ 7→ Xθ has a measurable graph
GrX = {(θ, xθ) ∈ RT +1 : θ ∈ Θ, xθ ∈ Xθ}, i.e. GrX is a Borel subset of RT +1.
The function GrX → RT : (θ, xθ) 7→ fθ(xθ,Y ) is measurable for each Y ∈ RT .
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Assumptions II

Assumption (Nonatomic convex cost functions)

For all θ, fθ is defined on (M′)2 with M′ neighborhood of M , [0,R + 1]T , and:
i) for each θ ∈ Θ, function fθ is continuous. In particular, fθ is bounded on M2;
ii) ∀θ ∈ Θ, ∀Y ∈M, x 7→ fθ(x,Y ) is differentiable and convex on M′;
iii) there is Lf > 0 such that ∀θ ∈ Θ, ∀xθ ∈M, ∀Y ∈M, ‖∇1fθ(xθ,Y )‖ ≤ Lf .

Assumption

For each θ ∈ Θ and each xθ ∈M, the function Y 7→ ∇1fθ(xθ,Y ) is continuous
on M.
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Definition (Wardrop Equilibrium (WE), [Wardrop(1952)])
A pure-action profile x∗ ∈ X is a pure Wardrop equilibrium of nonatomic
aggregative game G if we have, with X∗ =

∫
θ∈Θ x∗θ dθ:

fθ(x∗θ ,X∗) ≤ fθ(xθ,X∗), ∀xθ ∈ Xθ, ∀ a.e. θ ∈ Θ .

Theorem (IDVI formulation of WE)

Under Assumptions 1 to 3, x∗ ∈ X is a WE of nonatomic aggregative game G if
and only if either of the following two equivalent conditions is true:

∀ a.e. θ ∈ Θ, 〈∇1fθ(x∗θ ,X∗), xθ − x∗θ 〉 ≥ 0 , ∀xθ ∈ Xθ , (1a)
∫

Θ
〈gx∗(θ), xθ − x∗θ 〉 dθ ≥ 0 , ∀x ∈ X . (1b)
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Theorem (Existence of a WE, [Rath(1992)])

Under Assumption 1, Assumption 2 and Assumption 3.i), if for all θ and all
Y ∈M, fθ(·,Y ) is continuous on M, then the nonatomic aggregative game G
admits a WE.
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Definition (Monotone aggregative game)

With notation gx(θ) = ∇1fθ(xθ,
∫

x), for any θ ∈ Θ and any x, y ∈ L2([0, 1],M),
we say that the nonatomic aggregative game G is
i) monotone if

∫
Θ〈gx(θ)− gy (θ), xθ − yθ〉 dθ ≥ 0, ∀x, y ∈ L2([0, 1],M) .

ii) strictly monotone if equality holds iff x = y almost everywhere.
iii) aggregatively strictly monotone if equality holds iff

∫
x =

∫
y .

iv) strongly monotone with modulus α if
∫

Θ
〈gx(θ)− gy (θ), xθ − yθ〉 dθ ≥ α‖x − y‖2

2, ∀x, y ∈ L2([0, 1],M) .

v) aggregatively strongly monotone with modulus β if
∫

Θ
〈gx(θ)− gy (θ), xθ − yθ〉dθ ≥ β‖

∫
x − ∫ y‖2, ∀x, y ∈ L2([0, 1],M) .
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Example of public products game

Cost functions are given for each θ ∈ Θ as:

fθ(xθ,X) = 〈xθ, c(X)〉 − uθ(xθ) ,

c(X) ∈ RT specifies the per-unit cost of each of the T “public products”,

Player θ’s cost associated to these products is scaled by her contribution xθ,
uθ(xθ) measures the private utility of player θ for the contribution xθ.
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Proposition (Monotonicity of public product games)
Under above assumptions, in a public products game G, if c is monotone on M
and, for each θ, uθ is a concave function on M, then:
i) G is a monotone game.

ii) If ∀θ ∈ Θ, uθ is strictly concave on M, then G is strictly monotone.
iii) If c is strictly monotone on M, then G is aggregatively strictly monotone.
iv) If uθ is strongly concave on M with modulus αθ for each θ ∈ Θ and

infθ∈Θ αθ = α > 0, then G is a strongly monotone game with modulus α.
v) If c is strongly monotone on M with β, then G is an aggregatively strongly

monotone game with modulus β.
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Aggregate constraints and Variational Equilibrium

Aggregative constraint in nonatomic aggregative game G : X ∈ A,

where A is a convex compact subset of RT such that A ∩ X 6= ∅.

We denote X (A) , {x ∈ X : X =
∫

x ∈ A}.

Definition (Variational Wardrop Equilibrium (VWE))

A solution to the following IDVI problem:

Find x∗ ∈ X (A) s.t.
∫

Θ
〈gx∗(θ), xθ − x∗θ 〉 dθ ≥ 0, ∀x ∈ X (A),

is called a variational Wardrop equilibrium of G(A).
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Lemma
Under the previous assumptions on X.:
i) X is a nonempty, convex, closed and bounded subset of L2([0, 1],RT );
ii) X (A) is a nonempty, convex and closed subset of X ;
iii) X and A ∩ X are nonempty, convex and compact subsets of RT .

Paulin Jacquot (EDF - Inria) Infinite-Type Nonatomic Aggregative Games October 14, 2019 13 / 40



Theorem (Existence of VWE)

Under the previous assumptions, if a nonatomic aggregative game with coupling
constraint G(A) is monotone on X (A), then a VWE exists.

Theorem (Uniqueness of VWE)

Under the previous assumptions:

i) if G(A) is strictly monotone on X (A), then it has at most one VWE;
ii) if G(A) is aggregatively strictly monotone on X (A), then all VWE of G(A)
have the same aggregative profile;
iii) if G (without aggreg constraint) is aggreg. strictly monotone but, for each
θ ∈ Θ,Y ∈M, fθ(x,Y ) is strictly convex in x, then there is at most one WE.
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θ ∈ Θ,Y ∈M, fθ(x,Y ) is strictly convex in x, then there is at most one WE.
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Symmetric VWE with a finite-type game

Consider a game with a finite number of I types: {Xθ}θ and {fθ}θ are both finite.

Player set Θ divided into I measurable subsets Θ1, . . . ,ΘI s.t. each nonatomic
player θ ∈ Θi is of type i ∈ I = {1, . . . , I}.

Denote common action set of players in Θi by Xi and their cost function by fi .

Definition (Symmetric action and Symmetric VWE)
X S denotes the set of action profiles where players of same type play same action:

X S , {x ∈ X : xθ = xξ,∀θ, ξ ∈ Θi , ∀i ∈ I} and X S(A) , X S ∩X (A) .

A symmetric variational Wardrop equilibrium is a VWE that is symmetric.
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Proposition

In a finite-type nonatomic aggregative game G(A) with an aggregative constraint,
a VWE is a symmetric one iff it is a solution to the following VI:

Find x̂ ∈ X S(A) s.t.
∑

i∈I〈gx̂(i), µixi − µi x̂i〉 ≥ 0, ∀x ∈ X S(A) ,

where µi is the Lebesgue measure of Θi .

Proposition (Existence of SVWE)

Under above assumtions, a finite-type nonatomic aggregative game G(A) admits
a SVWE.
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Definition (Finite-type Approximating Games Sequence )

{Gν(Aν) =
(
(µνi )i∈Iν , (X νi )i∈Iν , (f νi )i∈Iν ,Aν

)
: ν ∈ N∗}

is a finite-type approximating game sequence for the game
G(A) =

(
Θ,X , (fθ)θ,A

)
if ∀ν ∈ N∗, there exists a partition (Θν

0 ,Θν
1 , . . . ,Θν

Iν ) of
Θ, with Iν , {1, . . . , Iν}, s.t. µ(Θν

0) , µν0 = 0 and ∀i ∈ Iν , µ(Θν
i ) , µνi > 0.

players in Θν
i are approximated by players of type i ∈ Iν : as ν → +∞:

i) δ
ν
, maxi∈Iν δνi −→ 0, with δνi , supθ∈Θν

i
dH (Xθ,X νi ) , and

span X νi = span Xθ, ∀θ ∈ Θν
i .

ii) dν , maxi∈Iν dνi −→ 0, where
dνi , supθ∈Θi sup(x,Y )∈M2 ‖∇1f νi (xi ,Y )−∇1fθ(xθ,Y )‖ .

iii) Dν −→ 0, where Dν , dH (Aν ,A), and span A = span Aν for all ν ∈ N∗.

Paulin Jacquot (EDF - Inria) Infinite-Type Nonatomic Aggregative Games October 14, 2019 17 / 40



Definition (Finite-type Approximating Games Sequence )

{Gν(Aν) =
(
(µνi )i∈Iν , (X νi )i∈Iν , (f νi )i∈Iν ,Aν

)
: ν ∈ N∗}

is a finite-type approximating game sequence for the game
G(A) =

(
Θ,X , (fθ)θ,A

)
if ∀ν ∈ N∗, there exists a partition (Θν

0 ,Θν
1 , . . . ,Θν

Iν ) of
Θ, with Iν , {1, . . . , Iν}, s.t. µ(Θν

0) , µν0 = 0 and ∀i ∈ Iν , µ(Θν
i ) , µνi > 0.

players in Θν
i are approximated by players of type i ∈ Iν : as ν → +∞:

i) δ
ν
, maxi∈Iν δνi −→ 0, with δνi , supθ∈Θν

i
dH (Xθ,X νi ) , and

span X νi = span Xθ, ∀θ ∈ Θν
i .

ii) dν , maxi∈Iν dνi −→ 0, where
dνi , supθ∈Θi sup(x,Y )∈M2 ‖∇1f νi (xi ,Y )−∇1fθ(xθ,Y )‖ .

iii) Dν −→ 0, where Dν , dH (Aν ,A), and span A = span Aν for all ν ∈ N∗.

Paulin Jacquot (EDF - Inria) Infinite-Type Nonatomic Aggregative Games October 14, 2019 17 / 40



Definition (Finite-type Approximating Games Sequence )

{Gν(Aν) =
(
(µνi )i∈Iν , (X νi )i∈Iν , (f νi )i∈Iν ,Aν

)
: ν ∈ N∗}

is a finite-type approximating game sequence for the game
G(A) =

(
Θ,X , (fθ)θ,A

)
if ∀ν ∈ N∗, there exists a partition (Θν

0 ,Θν
1 , . . . ,Θν

Iν ) of
Θ, with Iν , {1, . . . , Iν}, s.t. µ(Θν

0) , µν0 = 0 and ∀i ∈ Iν , µ(Θν
i ) , µνi > 0.

players in Θν
i are approximated by players of type i ∈ Iν : as ν → +∞:

i) δ
ν
, maxi∈Iν δνi −→ 0, with δνi , supθ∈Θν

i
dH (Xθ,X νi ) , and

span X νi = span Xθ, ∀θ ∈ Θν
i .

ii) dν , maxi∈Iν dνi −→ 0, where
dνi , supθ∈Θi sup(x,Y )∈M2 ‖∇1f νi (xi ,Y )−∇1fθ(xθ,Y )‖ .

iii) Dν −→ 0, where Dν , dH (Aν ,A), and span A = span Aν for all ν ∈ N∗.

Paulin Jacquot (EDF - Inria) Infinite-Type Nonatomic Aggregative Games October 14, 2019 17 / 40



Definition (Finite-type Approximating Games Sequence )

{Gν(Aν) =
(
(µνi )i∈Iν , (X νi )i∈Iν , (f νi )i∈Iν ,Aν

)
: ν ∈ N∗}

is a finite-type approximating game sequence for the game
G(A) =

(
Θ,X , (fθ)θ,A

)
if ∀ν ∈ N∗, there exists a partition (Θν

0 ,Θν
1 , . . . ,Θν

Iν ) of
Θ, with Iν , {1, . . . , Iν}, s.t. µ(Θν

0) , µν0 = 0 and ∀i ∈ Iν , µ(Θν
i ) , µνi > 0.

players in Θν
i are approximated by players of type i ∈ Iν : as ν → +∞:

i) δ
ν
, maxi∈Iν δνi −→ 0, with δνi , supθ∈Θν

i
dH (Xθ,X νi ) , and

span X νi = span Xθ, ∀θ ∈ Θν
i .

ii) dν , maxi∈Iν dνi −→ 0, where
dνi , supθ∈Θi sup(x,Y )∈M2 ‖∇1f νi (xi ,Y )−∇1fθ(xθ,Y )‖ .

iii) Dν −→ 0, where Dν , dH (Aν ,A), and span A = span Aν for all ν ∈ N∗.

Paulin Jacquot (EDF - Inria) Infinite-Type Nonatomic Aggregative Games October 14, 2019 17 / 40



Theorem (Convergence of SVWE to VWE)
Under above assps, let (Gν(Aν))ν be a sequence of finite-type approximating
games for the game G(A). Let x∗ be the VWE of G(A), x̂ν ∈ X ν(Aν) an SVWE
of Gν(Aν) for each ν ∈ N∗.Then, there exists ρ > 0 such that, with KA ,

R+1
ρ :

i) If G is aggregatively strongly monotone with modulus β, (X̂ν)ν converges to
X∗: for all ν ∈ N∗ such that max(δν ,Dν) < ρ,

‖X̂ν − X∗‖2 ≤ 1
β

(
(4Lf + 1)KA max(Dν , δ

ν) + (2M + 1)dν
)
.

ii) If G is strongly monotone with modulus α, then (x̂ν)ν , converges to x∗ in
L2-norm: for all ν ∈ N∗ such that max(δν ,Dν) < ρ,

‖x̂ − x∗‖2
2 ≤

1
α

(
(4Lf + 1)KA max(Dν , δ

ν) + (2M + 1)dν
)
.

Without aggregate constraints, one can replace KA (resp. Dν) by 1
2 (resp. 0).
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Lemma

Under Assumption 1, for all ν ∈ N∗, ‖xν‖2 ≤ δν + R for all xν ∈ X ν
S .

Lemma (Convergence of X ν
S to X )

Under the convexity assumptions (I), for all ν ∈ N∗,

i) for each xν ∈ X ν
S , d2(xν ,X ) ≤ δν ;

ii) for each x ∈ X , d2(ψν(x),X ν
S) ≤ δν , where ψνθ (x) =

∫
Θν

i
xξdξ

µν
i

,∀θ ∈ Θν
i ;

iii) for i ∈ Iν and xνi ∈ X νi , if d(xνi , rbd X νi ) > δνi , then xνi ∈ Xθ for all θ ∈ Θν
i ;

iv) for i ∈ Iν , θ ∈ Θν
i , and each xθ ∈ Xθ, if d(xθ, rbd Xθ) > δνi , then xθ ∈ X νi .
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Lemma

Under Assumption 1, for ν ∈ N∗,
i) dH(X ν ,X ) ≤ δν ;

ii) for X ∈ ri X , if d(X , rbd X ) > δ
ν , then X ∈ X ν ;

for Xν ∈ ri X ν , if d(X , rbd X ν) > δ
ν , then X ∈ X ;

iii) for X ∈ ri A, if d(X , rbd A) > Dν , then X ∈ Aν ;
for Xν ∈ ri Aν , if d(Xν , rbd Aν) > Dν , then Xν ∈ A;
iv) for X ∈ ri (X ∩ A), if d(X , rbd (X ∩ A)) > max(δν ,Dν), then X ∈ X ν ∩ Aν ;
for Xν ∈ ri (X ν ∩ Aν), if d(Xν , rbd (X ν ∩ Aν)) > max(δν ,Dν), then Xν ∈ X ∩ A.
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Assumption

There is a strictly positive constant η and an action profile x̄ ∈ X such that, for
almost all θ ∈ Θ, d(x̄θ, rbd Xθ) > η.

Lemma

Under Assumptions 1 and 5, there is a strictly positive constant ρ∗ and a
nonatomic action profile z ∈ X such that

∫
z ∈ ri (X ∩ A) and, for almost all

θ ∈ Θ, d(zθ, rbd Xθ) > 3ρ∗.
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Lemma (Convergence of X ν
S(Aν) to X (A))

Under Assumptions 1 and 5, let KA = R+1
ρ . Then, for all ν ∈ N∗ such that

max(δν ,Dν) < ρ,
i) for each xν ∈ X ν

S(Aν), d2(xν ,X (A)) ≤ 2KA max(Dν , δ
ν);

ii) for each x ∈ X (A), d2(ψν(x),X ν
S(Aν)) ≤ 2KA max(Dν , δ

ν).

{x|
∫

x ∈ Aν}

X ν
S

X ν
S(Aν)

xν

zν

wν
2ρ∗

Xν

Z

W ν
2ρ̄

2tρ
∫

=⇒

Aν

X ν

X ν ∩ Aν
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max(δν ,Dν) < ρ,
i) for each xν ∈ X ν

S(Aν), d2(xν ,X (A)) ≤ 2KA max(Dν , δ
ν);

ii) for each x ∈ X (A), d2(ψν(x),X ν
S(Aν)) ≤ 2KA max(Dν , δ

ν).

{x|
∫

x ∈ Aν}

X ν
S

X ν
S(Aν)

xν

zν

wν
2ρ∗

Xν

Z

W ν
2ρ̄

2tρ
∫

=⇒

Aν

X ν
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Proof of Convergence Theorem I

Fix ν ∈ N∗, define ẑν , Π(x̂ν) ∈ X (A) .

x∗ VWE of G(A) =⇒ ∫ 1
0 〈gx∗(θ), x∗θ − ẑνθ 〉 dθ ≤ 0.

x̂ν SVWE of Gν(Aν) =⇒ ∫ 1
0 〈hx̂ν (θ), x̂νθ − zνθ 〉dθ ≤ 0, ∀zν ∈ X ν(A),

with hx̂ν (θ) = ∇1f νθ (x̂νθ ,Xν) = ∇1f νi (x̂νi ,Xν) , hx̂ν (i), ∀θ ∈ Θν
i and

∀i ∈ Iν .
∀i ∈ Iν and θ ∈ Θν

i , by definition of dνi , we have ‖hx̂ν − gx̂ν‖2 ≤ dνi .
‖x̂ν − ẑν‖2 ≤ 2KA max(Dν , δ

ν) by preceding lemma.
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With these results and x̂νθ ≤ R + δ
ν for all θ, one has:

∫

Θ

〈
gx∗(θ)− gx̂ν (θ), x∗θ − x̂νθ

〉
dθ

=
∫

Θ
〈gx∗(θ), x∗θ − ẑνθ 〉 dθ +

∫

Θ
〈gx∗(θ), ẑνθ − x̂νθ 〉 dθ

+
∫

Θ

〈
gx̂ν (θ)− hx̂ν (θ), x̂νθ − x∗θ

〉
dθ +

∫

Θ

〈
hx̂ν (θ), x̂νθ −x∗θ

〉
dθ

first term is ≤ 0 (as x∗ is VWE)
second term is ≤ ‖gx∗‖2 ‖ẑ−x̂ν‖2 ≤ 2Lf KA max(Dν , δ

ν)
third therm is ≤ ‖gx̂ν − hx̂ν‖2 ‖x̂ν − x∗‖2 ≤ (2R + δ

ν)dν

Paulin Jacquot (EDF - Inria) Infinite-Type Nonatomic Aggregative Games October 14, 2019 24 / 40



With these results and x̂νθ ≤ R + δ
ν for all θ, one has:

∫

Θ

〈
gx∗(θ)− gx̂ν (θ), x∗θ − x̂νθ

〉
dθ

=
∫

Θ
〈gx∗(θ), x∗θ − ẑνθ 〉 dθ +
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For the last term, let y∗ν = ψ(x∗) ∈ L2([0, 1],M) and z∗ν , Πν(y∗ν) ∈ X ν(Aν).

∫

Θ

〈
hx̂ν (θ), x̂νθ −x∗θ

〉
dθ =

∑

i∈Iν

∫

Θν
i

〈
hx̂ν (i), x̂νθ − x∗θ

〉
dθ

=
∑

i∈Iν

〈
hx̂ν (i),

∫

Θν
i

x̂νθ − x∗θ dθ
〉

=
∑

i∈Iν

〈
hx̂ν (i), µνi (x̂νi − y∗νi )

〉

=
∑

i∈Iν

〈
hx̂ν (i), µνi (x̂νi − z∗νi )

〉
+
∑

i∈Iν

〈
hx̂ν (i), µνi (z∗νi − y∗νi )

〉

first term is ≤ 0 (def of x̂ν SVWE)
second term is ≤ (Lf + dν) ‖z∗ν − y∗ν‖2 ≤ (Lf + dν)2KA max(Dν , δ

ν)
(from def of dν and lemma)
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To sum up, considering ν large enough such that dν , δν ≤ 1:
∫

Θ

〈
gx∗(θ)− hx̂ν (θ), x∗θ − x̂νθ

〉
dθ ≤ Ων

with Ων , (4Lf + 1)KA max(Dν , δ
ν) + (2R + 1)dν .

Last, using the monotonicity definitions:
if G is strongly monotone with modulus α, then α ‖x̂ν − x∗‖2

2 ≤ Ων ;
if G β-is aggregatively strongly monotone , then β‖X̂ν − X∗‖2 ≤ Ων ,

leading to the convergence theorem.
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1 Monotonicity, Coupling Constraints and Symmetric Equilibrium

2 Approximating an Infinite-type nonatomic aggregative game

3 Construction of a sequence of finite-type approximating games

4 Illustration on a Smart Grid Example
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Case 1: Piecewise Continuous Charac – Uniform Splitting

Definition (Continuity of nonatomic player characteristic profile)

The characteristic profile θ 7→ (Xθ,∇1fθ) in nonatomic aggregative game G is
continuous at θ ∈ Θ if, for all ε > 0, there exists η > 0 such that: for each θ′ ∈ Θ

|θ − θ′| ≤ η ⇒
{

dH(Xθ,Xθ′) ≤ ε
sup(x,Y )∈M×M ‖∇1fθ(x,Y )−∇1fθ′(x,Y )‖ ≤ ε .

(2)

If this holds for all θ and θ′ on an interval Θ′ ⊂ Θ, then the player characteristic
profile is uniformly continuous on Θ′.
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Assume that the player characteristic profile θ 7→ (Xθ,∇1fθ) of nonatomic
aggregative game G is piecewise continuous, with a finite number K of
discontinuity points

σ0 = 0 ≤ σ1 < σ2 < · · · < σK ≤ σK = 1 ,

and that it is uniformly continuous on (σk , σk+1), for each k ∈ {0, . . . ,K − 1}.

For ν ∈ N∗, define an ordered set of Iν cutting points by

{υνi , i = 0, . . . , Iν} :=
{

k
ν

}
0≤k≤ν

∪ {σk}1≤k≤K

and the corresponding partition (Θν
i )i∈Iν of Θ by:

Θν
i = [υνi−1, υ

ν
i ) for i ∈ {1, . . . , Iν − 1} ; Θν

Iν = [υνIν−1, 1].

Hence, µνi = υνi − υνi−1. Denote ῡνi = υν
i−1+υν

i
2 .
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and that it is uniformly continuous on (σk , σk+1), for each k ∈ {0, . . . ,K − 1}.
For ν ∈ N∗, define an ordered set of Iν cutting points by

{υνi , i = 0, . . . , Iν} :=
{

k
ν

}
0≤k≤ν

∪ {σk}1≤k≤K

and the corresponding partition (Θν
i )i∈Iν of Θ by:

Θν
i = [υνi−1, υ

ν
i ) for i ∈ {1, . . . , Iν − 1} ; Θν

Iν = [υνIν−1, 1].

Hence, µνi = υνi − υνi−1. Denote ῡνi = υν
i−1+υν

i
2 .
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Proposition

Let Assumptions 1 to 4 hold, and assume that {span Xθ}θ∈Θ has a finite number
of elements. For ν ∈ N∗, consider the finite-type game Gν(Aν) with aggregative
constraint Aν , A, set of types Iν , {1 . . . Iν}, where for each type i ∈ Iν :

X νi , Xῡν
i

and f νi (x,Y ) , fῡν
i

(
x,Y

)
, ∀(x,Y ) ∈M×M.

Then
(
Gν(A)

)
ν

=
(Iν ,X ν ,A, (f νi )i∈Iν

)
ν

is a sequence of finite-type
approximating games of nonatomic aggregative game G(A).

i) Given ε > 0, there is η > 0 modulus of continuity for X. on (σk , σk+1).
For ν large enough, one has ∀i ∈ Iν , µνi < η so that ∀θ ∈ Θν

i , |ῡνi − θ| < η;
hence dH

(Xθ,X νi
)

= dH(Xθ,Xῡν
i

) < ε.
ii) According to the continuity property, for all (x,Y ) ∈M2:

‖∇1f νi (µνi x,Y ) − ∇1fθ(x,Y )‖ =
∥∥∥∇1fῡν

i

(
x,Y

)
− ∇1fθ(x,Y )

∥∥∥ < ε.

(ensure span Xθ to be the same for all θ ∈ Θν
i : further divide if necessary)
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Case 2: Finite-dim Parameterized Charac – Meshgrid

Assume that game G satisfy two conditions:

(i) action sets are K -dimensional polytopes: ∃P ∈MK ,T (R), and a bounded
mapping b : Θ→ RK , such that for any θ,

Xθ = {x ∈ RT : Px ≤ bθ},

which is a nonempty, compact, convex polytope.

(ii) There is a bounded mapping s : Θ→ Rl such that for any θ ∈ Θ,

fθ(·, ·) = f (·, · ; sθ) .

Furthermore, ∀(x,Y ) ∈M2, ∇1f (x,Y ; ·) is Lipschitz-continuous in s with a
Lipschitz constant L3, independent of x and Y .
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Characteristics of player θ are parameterized by point

(bθ, sθ) ∈
K∏

k=1
[bk , bk ]×

L∏

k=1
[sk , sk ] ⊂ RK+L,

with bk = minθ bθ,k , bk = maxθ bθ,k for k ∈ {1 . . .K}
and sk = minθ sθ,k , sk = maxθ sθ,k for k ∈ {1 . . . L}.

For ν ∈ N∗, consider a partition of
∏K

k=1[bk , bk ]×∏L
k=1[sk , sk ] into Iν , νK+L

equal-sized subsets, obtained by dividing each dimension into ν equal parts.
cutting points: bk,nk , bk + nk

ν (bk − bk) for k ∈ {1, . . . ,K},
and sk,nk , sk + nk

ν (sk − sk) for k ∈ {1, . . . , L}, with nk ∈ {0, . . . , ν}.
Let the set of vectorial indices

Γν , {n = (nk)K+l
k=1 ∈ NK+L | nk ∈ {1, . . . , ν}} .

Define the partition Θ =
⋃̇

n∈Γν Θν
n with :

Θν
n ,

{
θ ∈ Θ : bθ,k ∈ [bk,nk−1, bk,nk ) for 1≤k≤K ; sθ,k ∈ [sk,nk−1, sk,nk ) for 1≤k≤L

}
.
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Proposition

For ν ∈ N∗, let the finite-type game Gν(Aν) with an aggreg. constraint Aν , A,
set of types Iν , {n ∈ Γν : µ(Θν

n) > 0} and, ∀n ∈ Iν ,

X νn , {x ∈ RT |Px ≤ ∫Θν
n

bθ dθ} ,
f νn (x,Y ) , µνnf

( 1
µν

n
x,Y ; 1

µν
n

∫
Θν

n
sθ dθ

)
, ∀(x,Y ) ∈ µνiM×M.

Then, under Assumptions 1 to 4, (Gν(A))ν =
(Iν ,X ν ,A, (f νi )i∈Iν

)
ν

is a
sequence of finite-type approx. games of the game G(A).

i) δν → 0: for each n ∈ Iν , X νn =
{

x ∈ RT : Px ≤ 1
µν

n

∫
Θν

n
bθ dθ

}
. Then, by a

result generalized from [Batson(1987)],
∃C0 s.t., ∀θ′ ∈ Θν

n: dH (Xθ′ ,X νn ) ≤ C0
∥∥∥bθ′ − 1

µν
n

∫
Θν

n
bθ dθ

∥∥∥ ≤ C0
ν

∥∥∥b − b
∥∥∥.

ii) dν → 0: for each n ∈ Iν and each θ′ ∈ Θν
n, for all (x,Y ) ∈M2, one has:

‖∇1f νn (x,Y )−∇1fθ′(x,Y )‖ =
∥∥∥∇1f

(
x,Y ; 1

µν
n

∫
Θν

n
sθ dθ

)−∇1f (x,Y ; sθ′)
∥∥∥ ≤ L3

ν ‖s − s‖
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1 Monotonicity, Coupling Constraints and Symmetric Equilibrium

2 Approximating an Infinite-type nonatomic aggregative game

3 Construction of a sequence of finite-type approximating games

4 Illustration on a Smart Grid Example
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suppose an energy operator has access to the probability distribution of the
amount of flexible energy in N = 30 millions French households:
uniform dist. on [0,Emax] with Emax = 20kWh, that is φE (E ) = 1

Emax
for

E ∈ [0,Emax].

inverse cumulative distribution function: ∀θ ∈ Θ, Eθ = F−1
E (θ) = θEmaxN.

∀θ ∈ Θ, Xθ =
{

xθ = (xθ,O, xθ,P) ∈ R2
+ | xθ,O + xθ,P = Eθ

}
,

Consider two prices: cO(X) = aO
N XO and cP(X) = aP

N XP .

cost function of player θ:
∀xθ ∈ Xθ, fθ(xθ) = xθ,O×cO(X) + xθ,P×cP(X) = 〈xθ, c(X)〉

G obtained is aggreg. strongly monotone with modulus β = aO
N .

(G is NOT strongly monotone).
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Explicit computation of aggregate VWE profile as :
∫

Θ
〈gx∗(θ),xθ − x∗θ 〉 dθ ≥ 0, ∀x ∈ X ⇐⇒

∫

Θ
〈c(X∗), xθ − x∗θ 〉dθ ≥ 0, ∀x ∈ X

⇐⇒ 〈c(X∗),X − X∗〉 ≥ 0, ∀X ∈ X .

With aggregate flexible energy Etot ,
∫

Θ Eθ dθ = 1
2 NEmax, we obtain:

X =
{

(XO,XP) ∈ R2
+ | XO + XP = Etot

}
.

X∗ is the solution of the quadratic program:

min
X

aO
N × 1

2 X 2
O + aP

N × 1
2 X 2

P

XO + XP = Etot

0 ≤ XO,XP

that is: X∗ = (X ∗O,X ∗P) = ( aP
aO+aP

Etot,
aO

aO+aP
Etot).
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sequence of finite-type approximating games Gν

for each ν ∈ N∗, Iν = ν
population split uniformly with Θν

i = [ i−1
I , i

I ], for each i ∈ I = {1, . . . , I}.
consider for each i ∈ I:

Xi , {xi ∈ R2
+ | xi ,O + xi ,P = Ei , i

I NEmax} . (3)

fi , fθ for each i (same cost function for all players).

we get ∀i , δi = NEmax
I = 2Etot

I → 0, and of course di = 0.
Computing the aggregate approximate equilibrium, we obtain:

X̂ I =
(

aP
aO+aP

Etot(1 + 1
I ), aO

aO+aP
Etot(1 + 1

I )
)

= (1 + 1
I )X∗ ,

and thus we have:

‖X̂ I − X∗‖ = ‖X
∗‖

I =

√
a2

O + a2
P

aO + aP
Etot ×

1
I . (4)
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Applying the convergence theorem, with:
Lf = maxX∈X ‖c(X)‖ = aP

N Etot
we obtain:

‖X̂ I − X∗‖2 ≤ 1
β

2Lfδ
I = N

aO
2aP

N Etot ×
2Etot

I

⇐⇒ ‖X̂ I − X∗‖ ≤ 2Etot

√aP
aO
× 1√

I
.
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Conclusion

→ Use symmetric finite-dimensional WE to approximate WE of a (aggreg)
strongly monotone game.

Further work:
→ efficient algorithms to compute sols of finite dimensional VI (specific algos for
WE in games ?)

→ extension of some results in the monotone case ? Without monotonicity
assumptions ?

Thank you!
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