Demand Side Management in the Smart Grid: an Efficiency and Fairness Tradeoff

P. Jacquot 1,2 O.Beaude 1 S. Gaubert 2 N.Oudjane 1

¹EDF Lab

²Inria and CMAP, École Polytechnique

September 28, 2017

ISGT, Torino

DSM: Efficiency and Fairness

Conta Comp

IEEE

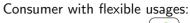
Consumer with flexible usages:

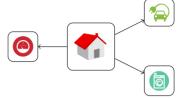
IEEE

Consumer with flexible usages:

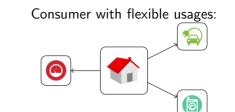
IEEE

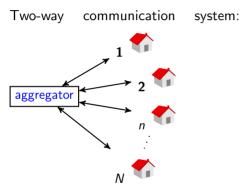
Consumer with flexible usages:





IEEE





Two-way

aggregator

EEE

Every user *n* in the set \mathcal{N} :

$$\min_{\ell_n\in\mathcal{X}_n}b_n\left(\ell_n,\ \sum_{m\in\mathcal{N}}\ell_m\right)$$

Paulin Jacquot

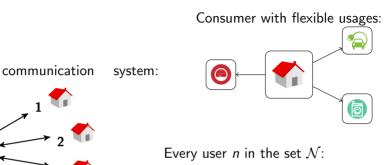
Ν

communication

n

Two-way

aggregator



 $\min_{\boldsymbol{\ell}_n\in\mathcal{X}_n}b_n\left(\boldsymbol{\ell}_n,\ \sum_{m\in\mathcal{N}}\boldsymbol{\ell}_m\right)$

 b_n depends on a price signal sent by the aggregator.

Paulin Jacquot

Ν

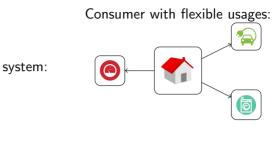
n

DSM: Efficiency and Fairness

Two-way

aggregator

ΕE



Every user *n* in the set \mathcal{N} :

$$\min_{\ell_n\in\mathcal{X}_n}b_n\left(\ell_n,\ \sum_{m\in\mathcal{N}}\ell_m\right)$$

 b_n depends on a price signal sent by the aggregator.

 $\Rightarrow \mathsf{Game}$

Paulin Jacquot

n

Ν

communication

DSM: Efficiency and Fairness

Two-way

aggregator

F



Every user *n* in the set \mathcal{N} :

$$\min_{\ell_n\in\mathcal{X}_n}b_n\left(\ell_n,\ \sum_{m\in\mathcal{N}}\ell_m\right)$$

 b_n depends on a price signal sent by the aggregator.

 \Rightarrow Game \Rightarrow Nash Equilibrium .

Paulin Jacquot

n

Ν

communication

DSM: Efficiency and Fairness

Paulin Jacquot

Daily Proportional (DP) [Mohsenian-Rad et al., 2010]

$$b_n(\ell_n, \ell_{-n}) = \frac{E_n}{\sum_{m \in \mathcal{N}} E_m} \sum_{t \in \mathcal{T}} C_t \left(\sum_{m \in \mathcal{N}} \ell_{m,t} \right)$$

E_n = Daily Flexible energy asked by consumer *n*,
C_t(ℓ) = Cost function for providing load ℓ at time *t*.

Daily Proportional (DP) [Mohsenian-Rad et al., 2010]

$$b_n(\ell_n, \ell_{-n}) = \frac{E_n}{\sum_{m \in \mathcal{N}} E_m} \sum_{t \in \mathcal{T}} C_t \left(\sum_{m \in \mathcal{N}} \ell_{m,t} \right)$$

 \blacktriangleright E_n = Daily Flexible energy asked by consumer *n*. ▶ $C_t(\ell) = \text{Cost function for providing load } \ell$ at time t.

Hourly Proportional (HP):

Paulin Jacquot

$$b_n(\ell_n, \ell_{-n}) = \sum_{t \in \mathcal{T}} \frac{\ell_{n,t}}{\sum_{m \in \mathcal{N}} \ell_m} C_t \left(\sum_{m \in \mathcal{N}} \ell_{m,t} \right)$$

Daily Proportional (DP) [Mohsenian-Rad et al., 2010]

$$b_n(\ell_n, \ell_{-n}) = \frac{E_n}{\sum_{m \in \mathcal{N}} E_m} \sum_{t \in \mathcal{T}} C_t \left(\sum_{m \in \mathcal{N}} \ell_{m,t} \right)$$

3/10

 \blacktriangleright E_n = Daily Flexible energy asked by consumer *n*. ▶ $C_t(\ell)$ = Cost function for providing load ℓ at time t.

Hourly Proportional (HP):

$$b_n(\ell_n, \ell_{-n}) = \sum_{t \in \mathcal{T}} \frac{\ell_{n,t}}{\sum_{m \in \mathcal{N}} \ell_m} C_t \left(\sum_{m \in \mathcal{N}} \ell_{m,t} \right)$$

New Theorem of NE uniqueness,

Paulin Jacquot

DSM: Efficiency and Fairness

Efficiency: Ratio of costs induced by the DSM Equilibrium profile and the optimal costs (from the aggregator side),

 $\mathsf{PoA} := \frac{\mathsf{Costs induced by equilibrium}}{\mathsf{Optimal costs}},$

Efficiency: Ratio of costs induced by the DSM Equilibrium profile and the optimal costs (from the aggregator side),

 $\mathsf{PoA} := \frac{\mathsf{Costs induced by equilibrium}}{\mathsf{Optimal costs}},$

 \rightarrow Theoretical PoA bound for HP billing

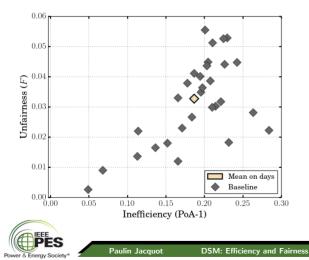
Efficiency: Ratio of costs induced by the DSM Equilibrium profile and the optimal costs (from the aggregator side),

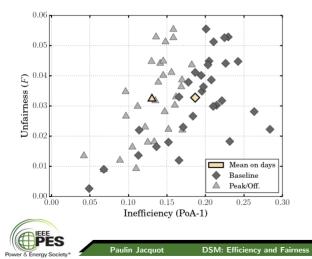
 $\mathsf{PoA} := \frac{\mathsf{Costs induced by equilibrium}}{\mathsf{Optimal costs}},$

- \rightarrow Theoretical PoA bound for HP billing
- Fairness [Baharlouei et al., 2013]: Distance of DSM bills to the vector of "externalities" :

F := distance (externalities, bills)

Externality(n) = (Optimal cost with n) - (Optimal cost without n).

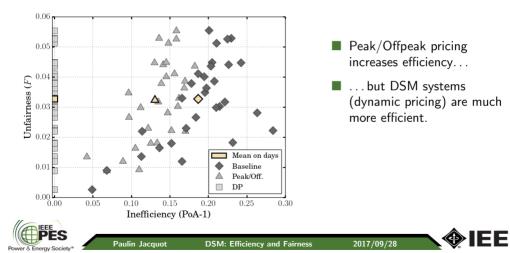


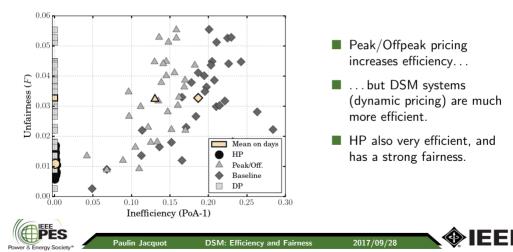


Peak/Offpeak pricing increases efficiency...

2017/09/28

. 5/10





6/ 10

Study of two billing mechanism to implement a DSM system,

- Study of two billing mechanism to implement a DSM system,
- Hourly Proportional : Efficient and Fair
 - \rightarrow incentives for consumers to join/stay in the DSM program

- Hourly Proportional : Efficient and Fair
 - \rightarrow incentives for consumers to join/stay in the DSM program

Relevant issues in practice :

- Hourly Proportional : Efficient and Fair
 - \rightarrow incentives for consumers to join/stay in the DSM program

Relevant issues in practice : Online / Offline version (Day-Ahead)

Paulin Jacquot

- Hourly Proportional : Efficient and Fair
 - \rightarrow incentives for consumers to join/stay in the DSM program

Relevant issues in practice :

Online / Offline version (Day-Ahead)

Paulin Jacquot

 $\blacksquare \rightarrow$ Robustness against unplanned customers events (stochasticity) ,

- Hourly Proportional : Efficient and Fair
 - \rightarrow incentives for consumers to join/stay in the DSM program

Relevant issues in practice :

Online / Offline version (Day-Ahead)

- $\blacksquare \rightarrow$ Robustness against unplanned customers events (stochasticity) ,
- \blacksquare \rightarrow Fast Convergence and Computation of the equilibrium

- Hourly Proportional : Efficient and Fair
 - \rightarrow incentives for consumers to join/stay in the DSM program

Relevant issues in practice :

Online / Offline version (Day-Ahead)

- $\blacksquare \rightarrow$ Robustness against unplanned customers events (stochasticity) ,
- \blacksquare \rightarrow Fast Convergence and Computation of the equilibrium

THANK YOU!

7/10

- Baharlouei, Z., Hashemi, M., Narimani, H., and Mohsenian-Rad, H. (2013). Achieving optimality and fairness in autonomous demand response: Benchmarks and billing mechanisms. *IEEE Transactions on Smart Grid*, 4(2):968–975.
- [2] Mohsenian-Rad, A.-H., Wong, V. W., Jatskevich, J., Schober, R., and Leon-Garcia, A. (2010). Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. *IEEE transactions on Smart Grid*, 1:320–331.

Paulin Jacquot

In the complete model, each consumer n can have constraints in his consumption, and solves the optimization problem:

$$\begin{split} \min_{\ell_n} b_n &= \kappa \sum_t \left(\frac{C_t(\ell^t)}{\sum_m \ell_m^t} \cdot \ell_n^t \right) \\ &\sum_{t \in \sqcup} \ell_n^t = E_n, \\ &\underbrace{\ell_n^t} \leq \ell_n^t \leq \overline{\ell}_n^t, \ \forall t \in \mathcal{T} \ . \end{split}$$
(1a)

. 8/10

F

For any subset of consumers \mathcal{M} , consider the induced optimal total cost:

$$\mathcal{C}_{\mathcal{M}}^* := \inf_{(\ell_m)_{m \in \mathcal{M}}} \sum_{h \in \mathcal{H}} C_h \left(\sum_{m \in \mathcal{M}} \ell_m^h \right) \;,$$

9/10

and define the externality of player n as the cost induced on the system by n:

$$V_n := \mathcal{C}^*_{\mathcal{N}} - \mathcal{C}^*_{\mathcal{N} \setminus \{n\}}$$

Then, we define the fairness of the DSM billing mechanism as:

$$F := \sup_{\mathbf{x} \in \mathcal{X}_{\mathcal{G}}^{\mathsf{NE}}} \left[\sum_{n \in \mathcal{N}} \left| \frac{V_n}{\sum_{m \in \mathcal{N}} V_m} - \frac{b_n(\mathbf{x})}{\sum_{m \in \mathcal{N}} b_m(\mathbf{x})} \right| \right].$$

Theorem (Uniqueness of a Nash Equilibrium with HP billing)

Let $c_h(\ell^h) := \frac{1}{\ell^h} C_h(\ell^h)$ be the per-unit price of electricity. If $c'_h \ge 0$, i.e. prices are increasing with global load, then a Nash Equilibirum exists. If, in addition:

$$\forall h, \frac{(\ell^h)^2}{\sum_n (\ell^h_n)^2} > \left(\frac{\ell^h c_h''(\ell^h)}{2c_h'(\ell^h)}\right)^2$$

then the Nash Equilibrium is unique.

Theorem (Bound on the Price of Anarchy with HP billing)

In the case of costs of the form $C_h(\ell^h) = a_2^h(\ell^h)^2 + a_1^h\ell^h$, the price of anarchy is bounded by:

$$\mathsf{PoA} \leq 1 + rac{3}{4} \sup_{h \in \mathcal{H}} rac{1}{1 + a_1^h/(a_2^h \overline{\ell}^h)}$$

