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Abstract—Game theory has been shown to be a valuable tool
to study strategic electricity consumers enrolled in a demand
response program. Among the different billing mechanisms
proposed in the literature, the hourly billing model is of special
interest as an intuitive and fair mechanism. We focus on this
model and answer to several theoretical and practical questions.
First, we prove the uniqueness of the consumption profile corre-
sponding to the Nash equilibrium, and we analyze its efficiency
by providing a bound on the Price of Anarchy. Next, we address
the computational issue of this equilibrium profile by providing
results on the convergence rates of two decentralized algorithms
to compute the equilibrium: the cycling best response dynamics
and a projected gradient descent method. Last, we simulate this
demand response framework in a stochastic environment where
the parameters depend on forecasts. We show numerically the
relevance of an online demand response procedure which reduces
the impact of inaccurate forecasts in comparison to a standard
offline procedure.

Index Terms—Smart Grid, Demand Response, Demand Side
Management, Game Theory, Nash Equilibrium, Best Response.

I. INTRODUCTION

DEMAND Response (DR) is a technique to exploit elec-
tricity consumers flexibilities by giving them particular

incentives, in order to achieve some services to the grid e.g.
reducing production, transmission and distribution costs or
increasing renewable energy insertion [1]. In DR programs, the
aggregated energy demand is a key metric and an aggregator
interacts with active consumers—willing to minimize their
electricity bill or maximize their utility—to optimize this
demand profile. In such a framework, energy can be viewed
as an asset demanded by customers, and which has a cost
that depends on total demand and the time of demand. Some
congestion effects arise on the most demanded time periods.

Various aspects of DR have been investigated in the existing
literature (consumers personal utilities and discomfort related
to their electricity consumption, consumers privacy, network
and power flow constraints), often leading to complex opti-
mization problems. Owing to the high number of variables
(electrical appliances of consumers) and privacy concerns, the
need for a decentralized optimization approach is a global
consensus [2].

Among the different decentralized approaches for a DR
system, several works rely on a dual decomposition of the
optimization problem of a centralized entity [3–7]: in that case,
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the centralized entity computes the vector of Lagrange multi-
pliers (e.g. from the supply-demand balancing constraint) of
his problem and sends it to consumers as prices for each time
period. An iterative algorithm between the entity (updating
the Lagrange multipliers) and the consumers (adjusting their
consumption) is run until convergence of the consumption
profiles (decomposition-coordination).

However, this kind of approach does not capture the effect
of strategic consumers willing to minimize their electricity
bill. To answer this issue, different game-theoretic frameworks
have been proposed in the smart grid literature, e.g. [8–13],
following the seminal paper [14]. There is an interaction
between consumers as their billing functions depend on the
load of other consumers, usually through the aggregated load.
Among the different game theory models, our paper follows
the same approach than [10–13]: we consider an hourly billing
mechanism, in which a consumer pays for each time period
(e.g. each hour) proportionally to the energy consumed on this
period. This billing mechanism has a structure of a routing
congestion game [15] and has been shown to have important
properties of fairness and incentives compatibility [13], while
remaining simple and intuitive.

In game-theoretic models, a major issue is to define an
effective procedure to compute and reach the consumption
equilibrium associated with the game. Several papers [10, 11,
16] have investigated the complexity and algorithmic aspects
associated to the notion of equilibrium. In [11] and [10],
the authors consider the same billing mechanism as the one
studied in this paper, and propose decentralized methods to
compute the Nash equilibrium (an iterative proximal best
response in [11] and a proximal-point algorithm in [10]).
In this paper, we investigate the theoretical properties and
computational aspects of the hourly billing mechanism and
discuss its practical implementation.
This paper brings five theoretical and practical contributions:

1) We give a new result on the uniqueness of the equi-
librium (Thm. 2) under a convexity assumption. This result
extends [10, Prop. 1]—which relies on the general results of
[17]—where uniqueness is given for a particular class of price
functions (of the form ct(`) = αt+βt`

bt with αt > 0, βt > 0
and bt > 1). In contrast, our uniqueness theorem applies to
any convex and strictly increasing price functions. It extends
[15, Thm. 1] to a more general model of constraints where
we consider upper and lower bounds on the load at each time
period;

2) We give a new result on the induced Price of Anar-
chy (PoA). This result (Thm. 3) gives an evaluation of the
equilibrium efficiency in terms of social cost. The PoA is
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numerically close to one but not one. To our knowledge, there
are very few existing results on the PoA for this framework. A
related but different result is [12], where the authors consider
a maximization game with individual utilities, and consider
the same hourly proportional billing. A bound on the PoA is
obtained assuming that players individual utilities are large
enough compared to the system cost. Our bound applies
to the minimization game without utilities, but is tighter
asymptotically. Another related work is [18] where the authors
prove that the PoA converges to one in the asymptotic case of
an infinite number of players;

3) We bound the convergence rate of the Best Response
(BR) algorithm in the case of affine prices (Thm. 4). In that
case, convergence is known but, to our knowledge, no bound
on the rate has ever been given. The convergence has been
conjectured more generally for any convex prices [19, 20].

4) We introduce a different algorithm: SIRD, based on a
simultaneous projected gradient descent (Algo 2), and show
its geometric convergence (Thm. 5) with a condition on
the price functions only. To our knowledge, those results
are also new. The proposed algorithms (BR and SIRD) and
their convergence rates are compared numerically with the
algorithms proposed in [10] and [11]. In the case of SIRD,
we allow a fix step-size and we do not need a proximal term
so the convergence is faster;

5) Last, we introduce an online DR procedure with receding
horizons (Algo 3), in the spirit of Model Predictive Control
[21], to take into account updated forecasts in a stochastic en-
vironment. We prove that the consumption profiles computed
by this procedure correspond to the desired NE in the limit of
perfect forecasts (Thm. 6). We show numerically, based on real
consumption data, that this procedure can achieve significant
savings compared to an offline procedure.

This paper reassembles and extends the main results on
the hourly billing model announced in our conference pa-
pers [22, 23]. Following these papers, in Thm. 3 here, we
give the upper bound on the Price of Anarchy [22, Thm. 2]
and in Prop. 1 we use the same property than [22, Thm. 1].
We also use the potential property of the game noticed in [23,
Thm. 2] and the Best Response algorithm presented in [22,
Def. 3]. However there are several additional results in this
paper: the theorem of uniqueness of the equilibrium presented
here (Thm. 2) is stronger than [22, Thm. 1]. Also, the SIRD
algorithm (Algo 2) and the convergence theorems (Thms. 4
and 5) were not presented in [22, 23]. Finally, we complete
the simulation framework in [22, 23] by considering updated
forecasts on the nonflexible load and by introducing an online
demand response procedure (Algo 3).

This paper is organized as follows: Sec. II gives the
mathematical model of the DR framework and the associated
billing mechanism, under the form of a game. In Sec. III, we
define two decentralized algorithms that enable to compute
the equilibrium consumption profiles. We prove the conver-
gence of those algorithms and provide upper bounds on their
convergence rates. We present a numerical study of the given
algorithms and compare them to two others algorithms from
[10] and [11]. Finally, in Sec. IV, we define an online DR

procedure and simulate it with historical consumption data
of consumers with electric vehicles as flexible consumptions.
We compare the performance of this online DR scheme to the
offline version and other consumption scenarios.

NOTATION CONVENTION: through this paper, bold font ` is
used to denote a vector as opposed to a scalar `.

II. CONSUMPTION GAME WITH HOURLY BILLING

A. District of flexible consumers

We consider a set N = {1, . . . , N} of residential consumers
linked to a local aggregator. Each household is equipped with
a smart meter enabling two-way communication of informa-
tion with the aggregator. We assume that each household
electricity consumption can be divided into two parts: one
which is nonflexible (lights, cooking appliances, TVs) and one
which is flexible (Electric Vehicle charging, water heating, etc).
Moreover, each smart meter is linked to an Electricity Con-
sumption Scheduler (ECS) that can automatically optimize and
schedule the consumption profile of the consumer’s flexible
appliances, given the constraints set by the consumer and the
physical constraints of each appliance.

B. From individual to aggregated consumption profiles

In the DR program, we determine a consumption profile for
each consumer on a finite time horizon T . In this study, we
take T as a discrete set of time periods T = {1, . . . T}. In
the simulations, T will correspond to one day, and each time
period t to one hour. The aggregated flexible load profile on
the set of consumers is obtained as:

L = (Lt)t∈T ∈ RT with ∀t ∈ T , Lt
∆
=
∑
n `n,t , (1)

where `n,t denotes the flexible consumption of consumer n
on time period t.

C. Aggregator objective from the aggregated consumption

The aggregator is himself linked to electricity providers and
we consider that he faces a per-unit (of energy) price function
Lt 7→ ct(Lt) associated with each time period t ∈ T for the
flexible electricity demand Lt given in (1). The total system
cost for providing the flexible profile (Lt)t∈T is then:

C(L)
∆
=
∑
t∈T

Lt × ct(Lt) , (2)

a quantity that should be minimized by the aggregator. In
particular, we make the assumption that the system cost C is
time-separable. The prices (ct)t can either correspond to real
prices or be abstract functions revealing the objective function
of the aggregator, up to an additive or multiplicative constant,
as seen in the three practical examples below.

Ex. 1. The aggregator has taken positions (LDA
t )t on the Day-

Ahead market. Then he is facing penalties on the balancing
market, and wants to minimize the distance to its bid profile:

C(L) =
∥∥LDA −L

∥∥2

2
=
∑
t∈T

(LDA
t )2 +

∑
t∈T

Lt×(2LDA
t +Lt) .
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Ex. 2. The aggregator owns a source of renewable energy and
forecasts a production profile (Ĝt)t. He wants to maximize the
flexible consumption when Ĝt is the most important [24], and
can therefore minimize:

C(L) =
∥∥∥Ĝ−L∥∥∥2

2
=
∑
t∈T

Ĝ2
t +

∑
t∈T

Lt × (2Ĝt + Lt) .

Ex. 3. The aggregator has his own production facilities with
convex and increasing production cost C(D) where D is the
total power to be provided. If the set of consumers has a total
aggregated nonflexible profile LNF, then at each time the total
demand is Dt = LNF,t+Lt. The additional cost for the flexible
load is C(LNF,t + Lt) − C(LNF,t) and the aggregator will
minimize:

C(L) =
∑
t

Lt ×
(
C(LNF,t + Lt)− C(LNF,t)

Lt

)
,

where the term between parentheses can be set as the price
signal ct(Lt) to be sent to consumers for coordination.

Note that in Examples 1 and 2, the functions (ct) are not
directly related to real prices but act rather as signals for
coordination between consumers.

In our framework, we will consider the following different
assumptions on the price functions (ct)t.

Assumption 1. For each t ∈ T , ct is twice differentiable,
strictly increasing and convex.

Assumption 2. For each t ∈ T , ct is twice differentiable,
convex and strictly increasing. Moreover, there exists a > 0
s.t. for any t and admissible `:

2c′t(Lt)

(
1−

(
c′′t (Lt)
2c′t(Lt)

)2

‖`t‖22

)
> a. (3)

Assumption 3. For each t ∈ T , ct is affine, positive and
increasing: ∀t ∈ T , ct(`) = αt + βt` with αt, βt ∈ (R∗+)2 .

The three latter assumptions are more and more restrictive:
Assumption 3 implies Assumption 2 with a = 2 mint βt, and
Assumption 2 implies Assumption 1. Note that Assumption 3
provides a practical case for which all our results hold, and is
verified in the case of Examples 1 and 2.

Remark 1. For a = 0, inequality (3) in Assumption 2
simplifies to the condition: ‖`t‖−1

2 >
∣∣∣ c′′t (Lt)

2c′t(Lt)

∣∣∣ . For each t,
c′′t has to be small relatively to c′t.

Assumption 1 is standard in the congestion games litera-
ture and corresponds to “type-B” functions in the seminal
paper [15]. This assumption is also made in most of the
papers dealing with game-theoretic DR models as [13]. Indeed,
it is justified by the fact that marginal costs of producing
and providing electricity are increasing. Assumption 3 is
also a standard assumption made in [25] because it enables
fast computation of NE (see Sec. III), but it is restrictive,
although several papers as [11, 14] simply consider linear
price functions ct(`) = βt`. Last, Assumption 2 is not very
explicit but is an in-between condition that comprises a larger
set of functions than linear functions and for which our main
results hold. For instance, the assumption holds for the family

of polynomial functions considered in [10]: ct(`) = α+ β`νt

with α > 0, β > 0, 1 6 νt < 3 and if Lt > 0 for each t ∈ T .
More generally, this condition will be verified if c′′t is small
enough compared to c′t.

Whatever the assumption retained, the objective of the
aggregator is to send the right incentives to consumers through
a billing mechanism in order to minimize his costs. A billing
mechanism does not refer to a real billing system but more
generally to a signal sent in order to coordinate consumers.
It is given as a tuple of billing functions (bn)n∈N chosen
by the aggregator to recover the global system cost C(L) =∑
t∈T Ltct(Lt). As a result, the billing functions bn are

chosen such that C =
∑
n∈N bn. Of course, one can always

consider a profit ratio κ if the billing functions are used to
design real consumer bills (the bill of n is set to κbn). The
function bn depends of course on n’s flexible consumption
profile `n but also depend on the load of the other consumers
through the aggregated load L.

D. Consumer’s Optimization Problems

In this paper, following our studies in [22, 23], we will
use an hourly proportional billing mechanism, where each
consumer n ∈ N minimizes her bill:

bn(`n, `−n)
∆
=
∑
t∈T

`n,tct(Lt) =
∑
t∈T

`n,tct
(
`n,t + sn,t

)
, (4)

where `−n
∆
= (`m)m6=n denotes the consumption of all

consumers but n and sn,t
∆
=
∑
m6=n `m,t.

This billing mechanism was shown to have interesting
fairness properties and is also adequate when considering
consumers’ utility functions (representing, e.g., temporal pref-
erences for flexible consumption) [22, 23, 25]. This mech-
anism gives a particular aggregative structure, where the
dependency to the others is only through the aggregated load
Lt = `n,t + sn,t.

Through her ECS, each consumer will adjust her flexible
consumption profile `n ∈ RT to minimize her bill, which
corresponds to the following optimization problem:

min
`n∈Ln

bn(`n, `−n) (5)

where Ln ⊂ RT is the set of consumer n feasible profiles. In
the remaining of the paper, we assume the following:

Assumption 4. For each n ∈ N , Ln is compact and convex.

Problem (5) is a convex nonlinear mathematical program
for which efficient methods of resolution exist [26]. Most of
the results given in this paper hold without any further as-
sumptions than Assumption 4, but we will focus on feasibility
sets of the form (6), also considered in [6, 10, 13, 14, 25, 27].

Main Example 1. Deferrable load with fixed energy demand:

Ln
∆
=
{
`n ∈ RT s.t.

∑
t∈T `n,t = En , (6a)

`n,t 6 `n,t 6 `n,t,∀t ∈ T
}
. (6b)
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Constraint (6a) ensures that the total energy given to n
satisfies her daily flexible energy demand over T , denoted
by En, that we assume fixed and deterministic1. Constraint
(6b) takes into account the physical power constraints and the
personal scheduling constraints (supposed given by the user
to her ECS). Note that taking `n,t = `n,t = 0 forces `n,t = 0
so that constraint (6b) includes in particular unavailability
during some time periods. Constraints (6) give a simple model
for deferrable loads such as water heaters (energy to heat a
quantity of cold water between refill and usage periods) or
electric vehicles (energy to be charged in the battery during
parking period) [4].

Note that (6) is a generalization of routing “atomic split-
table” congestion games [15], well studied in the game theory
literature, where the feasibility sets generally considered are
Ln

∆
= {`n ∈ (R+)T s.t

∑
t `n,t = En} where `n,t represents

the flow of n on arc t. The addition of time-dependent
bounding constraints (6b), also considered in [10, 27], gives a
more accurate model for electrical loads.

Another important practical example that fits in our context,
considered in [4, 6] is given below.

Ex. 4. Thermostatically controlled load :

Ln
∆
=
{
θcomf
n,t 6 θn,t 6 θ

comf
n,t ,∀t ∈ T , (7a)

θn,t =θn,t−1 + ρn(θout
n,t − θn,t−1) + εn`n,t,∀t ∈ T

}
. (7b)

Constraints (7) offer a model for thermostatically controlled
loads such as fridges or air conditioning. Here, (7a) en-
sures that the temperature remains within the comfort range
[θcomf
n,t , θ

comf
n,t ]. The temperature evolves through the linear equa-

tion (7b) according to the efficiency parameters ρn and εn, and
to the exterior temperature θout

n,t (see [6] for details). Using
(7b), one can rewrite (7) only with the variables (`n,t)t∈T .

Remark 2. Owing to the convexity of Ln (Assumption 4), we
do not consider appliances that require a fixed consumption
profile but for which the starting time can be optimized (e.g.
washing machines). In this case, one can use a (nonconvex)
mixed-integer formulation, as in [28].

We denote by L ∆
= L1× · · · ×LN the Cartesian product of

the feasible sets. As bn depends both on `n and `−n, we get
a N -person minimization game that we write in the standard
form [29] as G ∆

= (N ,L, (bn)n) .

E. Equilibrium Analysis and Efficiency

In game-theoretic models, a desirable stability property is
when each player n has no interest to deviate unilaterally from
her current profile `n. This corresponds to the notion of Nash
Equilibrium (NE), that is:

Def. 1 (Nash, 1950). Nash Equilibrium (NE).
(`NE
n ) is a NE of the minimization game G = (N ,L, (bn)n)

iff for any player n ∈ N :

∀`n ∈ Ln, bn(`NE
n , `NE

−n) 6 bn(`n, `
NE
−n) .

1En can be set by the consumer, induced by the physical parameters of her
appliances (battery capacity), or computed by learning the consumer’s habits.

It is known that an NE may not exist or may not be unique,
even in routing congestion games [15]. In our framework
however, both properties are ensured, as stated below.

Theorem 1. Under Assumption 1, there exists an NE of G.

Proof. This is a corollary of Rosen [17] as G is convex.

To ensure the uniqueness of the NE, a common approach,
adopted in [10], is to verify that a game is “diagonally
strictly convex” [17]. We will see further from Rm. 7 and
Prop. 1 that this property holds with Assumption 2. However,
the uniqueness results based on this approach ask for more
demanding conditions on the price functions ct(.) than As-
sumption 1. Here, in the case of feasibility sets of the form
(6), Thm. 2 ensures the uniqueness for arbitrary convex and
strictly increasing prices (Assumption 1).

Theorem 2. Under Assumption 1 and if, for each n ∈ N , Ln
is of the form (6), then G has a unique NE.

Proof: See Appendix A. This proof extends the uniqueness
theorem given in [15] in presence of the constraint (6b).

As said above, an NE is a very interesting situation in
practice because of its stability: each player will only increase
her bill if she changes her profile. However, an NE does not
necessarily minimize the social cost

SC(`)
∆
=
∑
n

bn(`) . (8)

Remark 3. With the billing equation (4), SC(`) is equal to the
total system cost

∑
t Ltct(Lt), a quantity that the aggregator

should minimize. In general, the system cost can differ from
the social cost of consumers, for instance if we consider
that the aggregator makes a positive profit, or if we consider
consumers utility functions as done in [23].

In general games, an NE can be suboptimal in terms of SC.
To measure the inefficiency of Nash Equilibria in terms of
social cost, a standard quantity is the Price of Anarchy:

Def. 2 (Koutsoupias et al, 1999). Price of Anarchy (PoA).
Given a N-player game G = (N ,L, (bn)n) and LNE its set

of Nash equilibria, the PoA is defined as the following ratio:

PoA(G) =
sup`∈LNE

SC(`)

inf`∈L SC(`)
.

Note that, from Def. 2, as LNE ⊂ L, the PoA is always
greater than one. Furthermore, finding an upper bound on the
PoA ensures that the social cost at any NE will be relatively
close to the minimal social cost. Bounding the PoA is a hard
theoretical question in general congestion games [32, 33]. In
[34], the authors give an upper bound if the price functions
are polynomial with bounded degree and positive coefficients.
With degree one (affine prices, Assumption 3) the bound is
PoA 6 1.5, which means that the NE profile can induce costs
as much as 50% higher than the optimal costs: implementing
such a framework would not be worthwhile for the aggregator,
as uncoordinated consumers will probably perform better (in
our simulations, the uncoordinated profiles induce costs 16%
higher than the optimal costs, see Tab. II). However, the results
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in [34] are worst-case bounds and these bounds are only
approached asymptotically2: in our simulations with affine
prices, the PoA was always much lower than 1.5 (around 1.017
from Tab. II). One of the reasons is that in [34] the model
does not consider the power constraints (6b), and a PoA of
1.5 might be reached in our case only if the constraints (6b)
are coarse enough. To further explain the low PoA in our
instances, we found the following theorem by applying the
(λ, µ) local smoothness technique of [34]:

Theorem 3. Under Assumption 3, define for any t ∈ T , ϕt =

(1 + αt
βtLt

)2, where Lt =
∑
n `n,t and t0

∆
= arg mint

αt
βtLt

.
Assuming that, for all t ∈ T :

ϕt 6 ϕt0 + 2 +
√

1 + ϕt0 , (9)

the following inequality holds:

PoA(G) 6
1

2

(
1 +

√
1 + ϕ−1

t0 +
1

2
ϕ
− 1

2
t0

)
. (10)

Proof: See Appendix B.

Remark 4. Using the inequality ∀x > 0,
√

1 + x2 6 1 + x,
(10) implies the following simplified—but coarser—bound:

PoA(G) 6 1 + 3
4 supt∈T

(
1 + αt

βtLt

)−1

. (11)

The assumption (9) in Thm. 3 ensures that price functions (ct)
cannot differ too much from one time period to another. This
is verified for instance if the price functions are uniform over
T (i.e. ∀t, ct = c). One can see that, according to Thm. 3, the
PoA converges to one when αt/(βtLt) converges to infinity
for each t: the PoA can be arbitrarily close to one if we choose
the coefficients αt large enough. This result is indeed intuitive:
when the prices are constant (βt = 0), they do not depend on
the aggregates L and there is no congestion effect; the optimal
profile is obtained by each consumer choosing the time periods
with lowest prices, independently of `−n. Another interesting
result is that the PoA also converges to one when the total load
is low (∀t, Lt → 0). Note that the right-hand-side of inequality
(10) is decreasing with ϕ0 and is equal to ( 1+

√
2

2 )2 ≈ 1.457
for ϕ0 = 1 so our result is always tighter than the bound
of 1.5 given in [34]. However, in our simulations with linear
prices, the PoA was still lower than the bound (10), even when
assumption (9) does not hold: the inequality (10) gives PoA 6
1.271 (average on the simulated days), while the PoA on mean
values from Tab. II is 1.017. In this regards, getting a tighter
bound or generalizing Thm. 3 to more general price functions
could be the subject of future work.

III. FAST COMPUTATION OF THE NASH EQUILIBRIUM

Since we have shown that the NE is a good decentral-
ized optimization target, the next question we address is the
computation of the NE consumption profiles. This question
is a central problem in game theory [35]. Furthermore, this
computation has to be done in a short time to be implemented
in practice. In this section, we provide two algorithms, we

2Meaning that there exists a sequence of games (Gν)ν>0, with parameters
depending on ν, and affine price functions ct such that PoA(Gν) −→

ν→∞
1.5.

prove their convergence to the NE and we give a guarantee
on their convergence rate in our specific setting.

A. Two Decentralized Algorithms

Given a profile `−n of the others, consumer n chooses the
profile `n corresponding to a minimizer of (5), which is called
her Best Response3. It is denoted by

BRn : sn 7→ argmin
`n∈Ln

∑
t

`n,tct(sn,t + `n,t) , (12)

which only depends on the sum of the load of the others
sn

∆
=
∑
m6=n `m ∈ RT because of the “aggregated” structure4.

A natural algorithm to compute an NE is to iterate best
responses and update the strategies, cycling over the set of
users until convergence. This procedure, referred to as Cycling
Best-Response Dynamics (CBRD) [36] is described by Algo 1.

Algo. 1 Cycling Best Response Dynamics (CBRD)

Require: `(0), stopping criterion
1: k ← 0
2: while stopping criterion not true do
3: for n = 1 to N do
4: s

(k)
n =

∑
m<n `

(k+1)
m +

∑
m>n `

(k)
m

5: `
(k+1)
n ← BRn(s

(k)
n )

6: end for
7: k ← k + 1
8: end while

Standard stopping criteria that can be used in Algo 1
are a maximum number of iterations kmax, a maximum
CPU time, an objective on the distance between iterates∥∥`(k−1) − `(k)

∥∥ 6 εstop, or the satisfaction of the KKT
conditions of optimality for each user’s convex optimization
problem (5) up to an absolute error tolerance.

In Algo 1, the only computationally demanding step is the
computation of BRn(sn) on Line 5. Its complexity differs
according to the price functions ct and the feasibility set
Ln. In general, there is no explicit expression of BRn(sn)
but, as Ln is convex and `n 7→ bn(`n, `−n) is convex,
techniques of nonlinear convex optimization can be used to
find an approximating solution [26]. The problem simplifies
if prices are affine (Assumption 3) and Ln is given by (6a)-
(6b) and none of the bounding constraints (6b) is active. In
that case, an explicit expression of BRn(sn) can be found
[37] so Line 5 can be executed in constant time. In the
general case of feasibility sets of the form (6) (bounding
constraints (6b) can be active), we are still in a specific case
of quadratic programming where an exact solution can be
computed in O(T ) with [38]. When Ln is a general polytope
given as a set of linear inequalities (as in [4]), convex quadratic
programming [26] can be used to compute the solution.

Remark 5. The for loop in Algo 1 (Line 3) implements
sequential updates and cycles over the set of players in the
arbitrary order 1, 2, . . . , N in a Gauss-Seidel manner [3].

3As player n chooses her best profile to the fixed profiles of the others;
she responds to them.

4In a general setting, BRn would be a function of `−n, and can be
multivalued. In that case, we can still use Algo 1 by arbitrarily choosing
any element of BRn(sn) at Line 5.
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Choosing a “good” order of the BR in the for loop might
accelerate the convergence of the algorithm. A simultaneous
version of Algo 1 (without Line 4 and with Line 5 executed by
all players in parallel) could also improve the speed of Algo 1,
but we observed that doing so can prevent its convergence.

Another natural algorithm to compute the equilibrium is
to emulate the projected gradient descent, well-known in
convex optimization [39], by considering the gradient of each
objective function of the players, as described in Algo 2.

Algo. 2 Simultaneous Improving Response Dynamics (SIRD)

Require: `(0), γ, stopping criterion
1: k ← 0
2: while stopping criterion not true do
3: for n = 1 to N do
4: `

(k+1)
n ← ΠLn

(
`

(k)
n − γ∇nbn(`

(k)
n , `

(k)
−n)
)

5: end for
6: k ← k + 1
7: end while

At Line 4 of Algo 2, ΠLn denotes the projection on the
feasibility set Ln of consumer n and ∇nbn = (∂bn/∂`n,t)t∈T
denotes the gradient with respect to variable `n. The same
stopping criteria listed below Algo 1 can be used for Algo 2.
The chosen denomination improving response recalls that, at
each iteration of Algo 2, player n improves her profile `n by
performing a projected gradient step (Line 4), but in general
does not choose the best improvement as in Algo 1.

Note that from Algo 1 to Algo 2, only the instructions within
the for loop are changed: the update of sn and computation of
BRn (Lines 4 and 5 of Algo 1) are replaced with the gradient
step (Line 4 of Algo 2).

Remark 6. Both Algo 1 and Algo 2 can be implemented in a
“decentralized” procedure: Lines 4 and 5 in Algo 1 and Line 4
in Algo 2 can be performed locally by each consumer’s ECS.
In this way, consumers’ privacy is respected as they do not
send any information about their constraints to the aggregator.
On the other hand, they only receive information on the
aggregated load s(k)

n and can hardly deduce the individual
consumption profiles `−n of the other consumers.

The computational complexity of one iteration (within the
for loop) of Algo 2 is equivalent to the complexity of the
projection ΠLn , which can be computed with the Quadratic
Program (QP) ΠLn(`′n) = argmin`n∈Ln ‖`′n − `n‖

2
2 so it

would be of the same order of complexity (see [26, Lecture
4]) as one iteration (within the for loop) of algorithm CBRD
with affine prices (Assumption 3). With the specific structure
(6) of the feasible set Ln ⊂ RT , a QP can be solved very
efficiently in O(T ) [38], so that one iteration of Algo 2 will
be very fast. Moreover, as we do not update sequentially the
load of the others `−n in Algo 2, the projected gradient step
within the for loop can be computed simultaneously and can
be parallelized.

B. Game Stability and Convergence of Algos 1 and 2

In this section, we provide theoretical convergence rates of
the two algorithms proposed in Sec. III-A. We first recall
the notion of stability, and prove (Prop. 1) that the energy
consumption game G defined above is strongly stable under
Assumption 2. The notion of stability was introduced in [40] in
order to study different game dynamics in continuous time and
their convergence to NE. We extend this property to a “strong”
version (symmetrically to the concept of strong monotonicity
for operators).

Def. 3 (Hofbauer and Sandholm, 2009). Stable Game.
A minimization game G = (N ,L, (bn)n) is stable iff

∀`, `′ ∈ L, (`′ − `)T. (F (`′)− F (`)) > 0 , (13)

with F (`)
∆
= (∇nbn(`))n∈N .

Moreover, G is a-strongly stable, with a constant a > 0, iff:

∀`, `′ ∈ L, (`′ − `)T. (F (`′)− F (`)) > a ‖`− `′‖2 . (14)

Remark 7. The condition of stability in (13) is equivalent
to the condition of strict diagonal convexity in [17], which
implies uniqueness of NE [17, Thm.2].

Def. 3 gives an abstract condition on an operator that
depends on the objective functions of the players. In our case,
players objectives (bn) depend linearly on price functions (ct)t
through (4), so it is interesting to translate the condition of
Def. 3 directly on the price functions, as stated in Prop. 1.

Proposition 1. Let a > 0 such that Assumption 2 holds. Then,
the game G is a-strongly stable.

Proof: See Appendix Sec. C.

This property will be used to show the convergence of
Algo 2 in Thm. 5. Concerning Algo 1, the approach is different
and the convergence is established only in the specific case of
Assumption 3. In general games, CBRD might not converge
[41] or might take an exponential time to converge [42]. In
atomic splittable congestion games on a parallel network, as
in our case, the convergence and the speed of Algo 1 has been
studied previously in [19] and [20], where the authors show
by different methods that there is a geometric convergence in
the case of N = 2 players and convex and strictly increasing
price functions (Assumption 1). However, to the best of our
knowledge, the convergence in this setting and for more
players N > 2 is still an open question.

In our case, simulations show a geometric convergence rate
for any instance of G satisfying Assumption 3 and for any N ∈
N, as illustrated in Fig. 1. In [20], it is conjectured that this
geometric convergence may also hold under Assumption 1.
Restricting ourselves to affine price functions, we notice that
game G is a potential game [23, 43] and we get the following
guarantee on the rate of convergence of Algo 1:

Theorem 4. Under Assumption 3, the sequence of iterates of
Algorithm CBRD

(
`(k)

)
k>0

converges to the unique NE `NE

of G. Moreover, the convergence rate satisfies:

∀k > 0,
∥∥∥`NE − `(k)

∥∥∥
2
6 C

√
M

a
× N√

k
, (15)
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where C depends on `(0) and the billing functions,
M = 2 maxt βt and a = 2 mint βt.

Proof: See Appendix D. The result is implied by convergence
of alternating block coordinate minimization method [44].

The proof of Thm. 4 uses the fact that M = maxnMn

where Mn is a Lipschitz constant of ∇nbn, and a is a strong
convexity (and a-strong stability) constant. To the best of our
knowledge, the question to know if Thm. 4 holds for general
price functions is open; it can be an avenue for future research.

It is easier to get a strong guarantee on the convergence rate
of Algo 2 for general price functions, as stated in Thm. 5:

Theorem 5. Denote by Mn a Lipschitz constant of ∇nbn and
M

∆
= maxnMn. Under Assumption 2 (a- strong stability), for

a step γ ∆
= a/(NM2), SIRD converges to the NE. Moreover:

∀k > 0,
∥∥∥`NE − `(k)

∥∥∥
2
6
(

1− a2

NM2

)k ∥∥∥`NE − `(0)
∥∥∥

2
. (16)

Proof: See Appendix Sec. E.
Note that, under Assumption 3, as stated in Thm. 5 we have

M = 2 maxt βt and a = 2 mint βt, which gives the explicit
contraction ratio η = 1− maxt βt

N mint βt
.

The bound given in Thm. 5 shows that the convergence of
Algo 2 is slower when the number of consumers N increases.

C. Numerical Convergence and Comparisons

In this section, we present a numerical comparison of the
two algorithms CBRD and SIRD given above. We also add
two other algorithms from related papers in the comparison:
• the distributed iterative proximal-point algorithm [10,
Algo. 1], referred to as itProxPt. This algorithm is analogous to
the SIRD algorithm proposed here, but with a decreasing time-
step (as opposed to the constant step γ) and a regularization
proximal term. Line 4 of Algo 2 is replaced with:

`(k+1)
n ←ΠLn

[
`(k)
n −γk

(
∇nbn(`(k)

n , `
(k)
−n)+ θ(`(k)

n −`(k−1)
n )

)]
.

In the numerical results below, we choose γ(k) = k−0.52

(to ensure the convergence criterion of
∑
γk < ∞ and∑

γ2
k = +∞ while keeping sufficiently large steps) and a

regularization weight θ = 0.5 (according to our tests, this latter
parameter does not have a significant impact on the speed of
convergence);
• the proximal decomposition algorithm [11, Algo. 1] referred
to as proxBR. This algorithm is analogous to the CBRD
(Algo 1) proposed in this paper, with a proximal regularization
term and an additional loop to update this proximal term.
Namely, the authors introduced a “regularized” game where
each player’s objective is replaced by:

fn(`n, `−n) = bn(`n, `−n) + τ
2

∥∥`n − ¯̀
n

∥∥2

2
, (17)

where ¯̀
n is the “centroid” updated in an additional loop.

The idea of the algorithm is to compute the NE of this
regularized game, and update the centroid to the computed
NE. Of course, the NE of the regularized game can only be
computed approximately. In the numerical results below, we
choose to update the centroid when the distance between the
iterates of two BR cycles

∥∥`(k+1) − `(k)
∥∥

2
is lower than 10−4.

The regularization parameter is taken to τ = 3(N−1) maxt ct,
just high enough to ensure the given condition of convergence
(choosing a higher parameter τ slows the convergence). Note
that CBRD corresponds to the case τ = 0, a case dismissed
by the proposed convergence conditions [11, Thm. 2].

We consider numerical instances with T = 10, and feasi-
bility sets of the form (6), constructed as follows:
1) in instances I1, functions (ct) are affine and uniform i.e.
∀t, ct(L) = c(L) = α + βL where α (resp. β) is drawn
uniformly from [0, 4] (resp. [1, 4]). For each n ∈ N , En is
drawn uniformly from [1, 10]. The lower bounds are all set to
`n,t = 0. A subset Tn of consecutive time periods of length
Tn > 4 is drawn randomly from T , and the upper bounds are
set to `n,t = En if t ∈ Tn and to `n,t = 0 if t /∈ Tn;
2) in instances I2, price functions are affine and time depen-
dent i.e. ∀t, ct(L) = αt + βtL where αt (resp. βt) is drawn
uniformly from [0, 4] (resp. [1, 4]). For each n ∈ N , En is
drawn uniformly from [1, 10]. A subset Tn of consecutive time
periods of length Tn > 4 is drawn randomly from T . For
t /∈ Tn, we take `n,t = `n,t = 0. For t ∈ Tn, `n,t is drawn
uniformly from [0, En/Tn], and `n,t is drawn uniformly from
[En/Tn, En], ensuring that Ln 6= ∅.

The four algorithms considered above are implemented in
Python 3.5 and run on an Intel i7 @2.6GHz on a single core
and with 8GB of RAM. To solve the quadratic programs (QP)
subproblems of each algorithm (Line 5 of CBRD and Line 4
of SIRD), we use the Brucker algorithm [38]. Note that if Ln
is a general polytope, any quadratic programming solver can
be used instead to solve those subproblems.

Fig. 1: Average convergence rate of the four implemented
algorithms on ten instances I1. When the number of players N
increases, the convergence rate of both algorithms decreases,
but SIRD becomes faster than CBRD.

Fig. 1 shows the convergence of the four algorithms to the
NE. The results are given on average on a set of ten instances
I1. The convergence speed of the algorithms decreases with
the number of users, as given in Thm. 5. We observe that,
in spite of the weaker theoretical result for CBRD (see (15)
compared to (16)), the convergence seems also geometric,
and even faster than Algorithm SIRD. We also observe that
the convergence rate of the comparison algorithms itProxPt
and proxBR is not comparable with the convergence rate of
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CBRD and SIRD. This can be explained by the addition of the
regularization term which slows the convergence and, also, by
the diminishing step for ItProxPoint (instead of a constant step
γ for SIRD) and by the additional loop for proxBR compared
to CBRD.

N= 10 20 50 100
BR 0.15 1.4 23.98 112.1 TL(97)

SIRD 0.47 4.11 41.97 TL(100)
ItProxPt[10] 2.07 17.18 89.3 TL(83) TL(100)
proxBR[11] 57.68 TL(2) 98.4 TL(94) TL(100) TL(100)

(a) I1 Uniform affine prices, bounds `n,t = 0, `n,t ∈ {0, En}
N= 10 20 50 100
BR 0.08 0.36 3.45 54.17 TL(3)

SIRD 2.24 12.08 95.5 TL(86) TL(100)
ItProxPt[10] 0.77 4.83 65.1 TL(30) TL(100)
proxBR[11] 75.28 TL(4) TL(100) TL(100) TL(100)

(b) I2 Random affine prices, random bounds `n,t, `n,t

TABLE I: Average CPU time (sec.) for NE computation for
one hundred instances I1 (a) and one hundred instances I2 (b).
xx-TL(k) indicates that the time limit (120 sec.) was reached
for k instances, while the remaining instances took an average
CPU time of xx seconds.

Tab. I shows the CPU time needed to compute the NE at
a given precision: the stopping criterion considered here is
the satisfaction of the KKT conditions for each problem (5)
with an absolute error of 10−2, with a time limit (TL) of two
minutes per instance.

We observe that CBRD is the fastest method to compute
the NE. The algorithm ProxBR reaches the time limit even for
a relatively small number of consumers (N = 20). We notice
that SIRD is slower on the heterogeneous instances I2, which
can be easily explained from the step γ chosen in Thm. 5. On
the contrary, CBRD and itProxPt are slower on homogeneous
instances I1, which can be explained by the importance of
symmetries in those instances. We can see that for the bigger
instances (N = 100), the time limit is reached for half
of the instances for CBRD (and for all instances for other
algorithms). The time limit considered here was only of two
minutes: it could be extended in a practical implementation
of a DR program. However, the computational time can be
limiting, for instance if the equilibrium needs to be recomputed
in case of a change of parameters (see Sec. IV). Thus, using
those methods for a larger system (thousands of consumers)
might be prohibited, in particular if we allow a more complex
description of users constraints than (6).

However, if we stay within the proposed order of magnitude
(N 6 100), the simulations show that CBRD (and SIRD in
most cases) needs only a few seconds to compute the NE. It
enables to consider an online procedure, where the equilibrium
can be recomputed at each hour, as explained below.

IV. SIMULATION OF ONLINE DEMAND RESPONSE

In this section, we propose a practical procedure to imple-
ment the DR framework described above. We assume that, as
described in Sec. II-C Example 3, the aggregator prices come
from a generic cost function C(.) that depends on the total load

LNF,t+Lt (nonflexible plus flexible) at each time period. The
flexible consumption is considered as an additional load and
its price is set for each time period t ∈ T to:

ct(Lt)
∆
=

1

Lt
(C(LNF,t + Lt)− C(LNF,t)) . (18)

The equilibrium consumption for the flexible consumption
profiles have to be computed before real-time consumption.
As a result, the nonflexible demand LNF has to be estimated
in order to evaluate price functions (ct)t by injecting the
estimation L̂NF in (18). To minimize the impact of forecast
errors made on LNF, we consider an online procedure in
which, at each hour, an updated forecast L̂NF is taken into
account. The equilibrium profiles for the flexible consumption
is then re-computed for the hours ahead to the end of the
optimization horizon T , using Algo 1 or Algo 2.

A. Online Demand Response Procedure

The initial time horizon T that we consider for the planning
via DR starts each day at noon (t = 1) and stops at noon the
day after (t = T ), with an hourly time step. The “online”
procedure computes the DR equilibrium flexible consumption
profiles on time horizon {1, . . . T} for each day. As the price
functions ct depend on the nonflexible load through (18),
and as the accuracy of forecast of this load improves when
approaching from real-time, we re-compute the equilibrium
using updated forecasts at each time period, as described
below.

Algo. 3 Online Demand Response Procedure
1: Start at t = 1
2: while t 6 T do
3: Set new horizon T (t) = {t, t+ 1, . . . , T}
4: Get LNF forecast on T (t): L̂(t)

NF
∆
=
(
L̂

(t)
NF,s

)
t6s6T

5: Re-compute prices ct(.) for t ∈ T (t) from (18)
6: Run Algo. SIRD or BRD to compute NE `(t) on T (t)

7: for each user n ∈ N do
8: Realize computed profile on time t, `(t)n,t
9: Update L(t+1)

n
∆
=
{

(`n,s)s>t|(`(t)n,t, [`n,s]s>t) ∈L
(t)
n

}
10: end for
11: Wait for t+ 1
12: end while

Remark 8. If one considers sets (Ln)n of the form (6), then
the updating step on Line 9 only consists in updating the
energy demand for the remaining time: E(t+1)

n
∆
= E

(t)
n − `(t)n,t.

Remark 9. In practice, the NE profile `(t) has to be computed
before period t to begin consumption at time t (Line 8). If τ
is an upper bound on the computation time of the NE profile
(Line 6), then, as we want to use the latest available forecast,
Lines 3-5 would be run just before t− τ , Line 6 is run in the
interval [t− τ, t] and Line 8 is executed through [t, t+ 1].

Observe that in Algo 3, considering an updated forecast
at Line 4 leads to updated price functions (ct)t (Line 5),
according to equation (18). In turn, the updated price functions
modify the objective function of user n, bn, used in Line 6.
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The difference of Algo 3 with an “offline” version is that
we recompute the equilibrium consumption (Line 6) at each
time for all the time periods ahead. In an offline DR, we would
compute the equilibrium consumption for all the horizon T =
{1, . . . , T} only once, just before t = 1.

Proceeding with this “online” version has two main advan-
tages. First, it enables to rely on updated forecasts with new
information acquired on the nonflexible load LNF (Line 4).
Second, it also enables to cope with local issues as disconnec-
tion of an user or a communication bug: in that case, lines 8
and 9 would not be executed for the involved user, and this
user will have the same energy demand for the next round at
t+ 1. With this kind of online procedure, it is also important
to ensure that the final realized profile (`

(t)
n,t)t∈T is globally

consistent: in the limit of perfect forecasts, it has to correspond
to an equilibrium of the initial game.

Theorem 6. Suppose that either Assumption 2 with a = 0
holds (strict stability from Prop. 1) or that Assumption 1 holds
and the sets (Ln)n are of the form (6). Then the online DR
procedure of Algo 3 is consistent: if forecasts are perfect (i.e.
∀t ∈ T ,∀t′ ∈ T (t), L̂

(t)
NF,t′ = LNF,t′ ), then for any t2 > t1, the

NE profile `(t1) computed at t1 with forecast L̂(t1)
NF is equal

on {t2, . . . , T} to the NE profile `(t2) computed at t2 with
forecast L̂(t2)

NF .

Proof: See Appendix F.
Thm. 6 states a dynamic programming principle adapted

to our game-theoretic framework. To quantify the value of
this online procedure in the more realistic case of imperfect
forecasts, we simulate it on a set of consumers and parameters
taken from real data, defined below.

B. Consumers

We consider a set of N = 30 users owning an Electric
Vehicle (EV) from the database of Texan residential consumers
PecanStreet Inc. [45]. We consider that the charging of the
EV is the only flexible appliance of each consumer managed
through the DR program, while the remaining of the user’s
consumption is nonflexible and is taken as in the data. We
denote by D ∆

= {16/01/01, . . . , 16/01/31} the set of the 31
days of January 2016 for which we simulate the DR program
and we index a parameter by d ∈ D when it is specific to
day d. For constraints (6a-6b), we take, for each day d ∈ D,
the total flexible demand of user n, En,d as the total observed
consumption for the EV of n on the time set T = {1, . . . , T},
taken as the twenty-four hours from day d 12PM to day d+ 1
11AM (including the regular EV residential night charging
period). The power lower bound is always taken to zero
`n,d,t = 0. For the power upper bound `n,d,t, we consider
two cases: if a positive power was given at d, t in the data, we
set `n,d,t to the maximum power given to n’s EV on all time
periods in the data in the set D. If the power given to the EV
is 0 at d, t in the data, we take `n,d,t = 0 (i.e. we consider
that the EV of n was not available to charge on period d, t).

C. Price Functions and Forecasts of the Nonflexible Load

Following [23], we consider that the aggregator has a pro-
viding cost for the global demand at time t, Dt

∆
= (LNF,t+Lt),

that does not depend on the time, and given (in $) by
C(Dt)

∆
= 0.711 − 0.0417Dt + 0.00295D2

t where the coeffi-
cients replicate the cost function of a real residential electricity
provider. For this, we computed the average, minimum and
maximum values of LNF,t over all the hours of the 31 days
of January 2016 on our set of 30 consumers and interpolate
the three values (avg LNF,t, minLNF,t, maxLNF,t) to three
respective prices proposed by the Texan distributor Coserv
[46] so that the per-unit price c̃(D)

∆
= C(D)/D verifies

c̃(avgLNF,t) = 0.080$/kWh (price for “base” contracts),
c̃(minLNF,t) = 0.055$/kWh (price for Off-Peak hours in
Time-of-Use contracts) and c̃(maxLNF,t) = 0.14$/kWh (price
for Peak hours). Following (18), the price for the flexible load
is given by: ct(Lt) = (−4.17+0.590LNF,t)+0.295Lt, so that
Assumption 3 holds.

As prices depend on the nonflexible load, the aggregator
has to compute a forecast L̂(t)

NF
∆
=
(
L̂

(t)
NF,t, . . . L̂

(t)
NF,T

)
at each

time t so that the equilibrium consumption for time periods
{t, . . . , T} can be computed using Algo 1 or Algo 2. To
simulate the forecasts, we assume that the forecast made
at time t for period t′ > t, L̂(t)

NF,t′ has no bias, that is
E[LNF,t′ |σ(Ft)] = L̂

(t)
NF,t′ (where Ft is the natural filtration

over (LNF,t)t), and that we have perfect information at time t,
that is: L̂(t)

NF,t = LNF,t . Considering that LNF,t = Pte
Xt where

Xt follows an Ornstein-Uhlenbeck [47] process with mean
reverting coefficient m and volatility σ, and Pt a seasonality
factor that depends on the hour of the week (1st hour to 168th

hour), we get for any t 6 t′:

L̂
(t)
NF,t′ =Pt′

(
LNF,t

Pt

)e−m(t′−t)

exp
(
σ2

4m
(1− e−2m(t′−t))

)
.

Using a least-squares regression on the observed data from
years 2014 and 2015, we compute m ' 0.198 h−1 and σ '
0.117 h−1/2. An example of the simulated forecasts made at
four different time periods is given in Fig. 2.

Fig. 2: Forecasts of the nonflexible load L̂(t)
NF evolving in time.

We assume a perfect forecast at time t for t. Forecasting
performance increases when approaching real time.

D. Gains with the Online DR Procedure

For each day of January 2016, we run the online DR Pro-
cedure described in Sec. IV-A to get the flexible consumption
profile of each user `n, and the associated social cost on
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the DR horizon {1, . . . , T}. We compare the total social cost
over the set D of simulated days obtained via the DR online
procedure with the total social costs obtained with the four
other consumption scenarios below:

1) uncoordinated case: no DR is implemented to control
or incentivize consumers flexibility; the flexible consumption
profiles are taken as the observed values in the data;

2) offline DR: the equilibrium is computed only once at
t = 1 and for the whole time horizon {1, . . . T} considering
the first forecast L̂(1)

NF available at t = 1;
3) perfect forecast DR: offline DR, where we take L̂(1)

NF =
LNF. With Thm. 6, it is useless to recompute the profiles at
each time period;

4) optimal scenario: a centralized entity (with perfect fore-
casts) computes the flexible consumption profile ` that mini-
mizes the system cost

∑
t Ltct(Lt) (also equal to the social

cost, Rm. 3).
For the online DR and the comparison scenarios 2) and 3), NE
are computed by implementing Algo 1 (CBRD) with the same
configuration than in Sec. III-C.For the comparison scenario
4), we compute the optimal consumption profile satisfying all
users constraints (6a-6b), for each simulated day (from 12PM
to 11AM) in D. The associated problems are convex QPs with
linear constraints, that are solved easily with the solver Cplex
12.6 in 0.31seconds on average.

Cons. Scenario Social Cost Avg. Price Gain
Uncoordinated $ 1257.2 0.200 $/kWh —

Offline DR $ 1231.6 0.195 $/kWh 2.036%
Online DR $ 1131.1 0.180 $/kWh 10.03%

Perfect forecast DR $ 1075.2 0.171 $/kWh 14.47%
Optimal scenario $ 1056.8 0.169 $/kWh 15.94%

TABLE II: Social Costs, average prices and relative gain to
the uncoordinated consumption scenario on January 2016 .

Fig. 3: Consumption profiles on a typical day, with the
different scenarios listed in Sec. IV-D. The optimal profile
flattens the consumption. The online DR procedure of Algo 3
gets closer to the Perfect forecast (offline) DR profile.

Tab. II summarizes the numerical results: it gives the total
costs on the 31 days of January 2016 and compares the gains
of the different flexible consumption scenarios relatively to

the uncoordinated one. We first observe that performances
of perfect forecasts DR are closed to the optimal scenario.
This confirms the theoretical results provided on the efficiency
of the NE in Thm. 3. We see on this table that the online
DR procedure achieves significant savings compared to the
offline version for which the performance is really low on
average: using the offline DR decreases the system costs by 2%
relatively to the uncoordinated profile, that is, when consumers
behave without any incentives (comparison scenario 1)). Im-
plementing this offline DR program might not be worthy as
it still involves a sophisticated communication and automation
structure and it adds more constraints for consumers. This low
performance is directly linked to our simple and naive model
for the nonflexible load forecasts, which results in inaccurate
forecasts for the last hours, as seen in Fig. 2. Even if more
advanced forecasting methods (see [48]) could improve this
accuracy, we cannot get rid of the high variance due to the
small number of consumers (N = 30 in our example, and
several hundreds for an aggregator at the scale of a typical low-
voltage station). The online DR procedure seems to bring a
solution to this issue: even with our simple forecast model, we
achieve more than 10% of savings, with a gap of only 4% from
the scenario with perfect forecasts. These results show that
implementing the given online DR procedure, even without
very accurate forecasts, is worthwhile for the aggregator.

V. CONCLUSION

In this paper, we developed a game-theoretic model for
a residential demand response program, and we addressed
several issues both on the theoretical and practical aspects.
We gave several new theoretical results about the uniqueness
and existence of a Nash equilibrium consumption profile for
which the price of anarchy is theoretically bounded. We proved
that the two proposed algorithms CBRD and SIRD provide
approximations of the NE at an arbitrary accuracy in finite
time. We introduced and simulated an online procedure that
recomputes the NE profiles at each time period to take into
account new information, for example updated forecasts. We
showed numerically that this online procedure achieves a small
price of anarchy when the parameters are fixed but also when
the demand is uncertain. Our simulations show that the online
procedure reduces the impact of inaccurate forecasts on the
social cost by 8%.

Several extensions of this work can be undertaken. First,
our online procedure can be directly applied in the presence
of other sources of stochasticity such as market prices or
local renewable production sources. The aggregator objective
can also be generalized to take into account the distance to
a reference load profile or to maximize consumption during
renewable production peaks or to take into account market
prices. Also, two main theoretical questions are still open.
First, the result on the PoA bound could be improved to be
tighter to the numerical results, and generalized to a larger set
of functions. Second, the convergence theorem for the Best
Response Dynamics (CBRD) could also be improved, as the
observed convergence rate is faster than the given bound, and
the convergence is numerically observed for a larger set of
prices than affine functions.
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APPENDIX A
PROOF OF THM. 2: UNIQUENESS OF NE IN G

The proof follows the one of [15], extending it to the
constrained case with constraints of the form (6b).

We denote by λn ∈ R the Lagrange multiplier associated
to (6a), along with µ

n,t
> 0 (resp. µn,t > 0) the multiplier

associated to `n,t 6 `n,t (resp. to `n,t 6 `n,t).
Note that the KKT conditions give that, at optimality:

γn,t(`n,t, Lt) = λn + µ
n,t
− µn,t , (19)

where γn,t(`n,t, Lt)
∆
= ct(Lt)+`n,tc

′
t(Lt) is the marginal cost

of n. Let us consider ` and ˆ̀ two NEs. From (19), we get:

`n,t < `n,t ⇒ µn,t = 0⇒ γn,t(`n,t, Lt) > λn

and `n,t > `n,t ⇒ µ
n,t

= 0⇒ γn,t(`n,t, Lt) 6 λn

and the same inequalities hold for ˆ̀. First note that:(
λ̂n 6 λn and L̂t > Lt

)
⇒ ˆ̀

n,t 6 `n,t , (20)(
λ̂n > λn and L̂t 6 Lt

)
⇒ ˆ̀

n,t > `n,t . (21)

Let us show (20). If ˆ̀
n,t=`n,t or `n,t=`n,t, then ˆ̀

n,t 6 `n,t
is clear. Else, ˆ̀

n,t > `n,t and `n,t < `n,t so:

γn,t(ˆ̀
n,t, L̂t) 6 λ̂n6λn6γn,t(`n,t, Lt) 6γn,t(`n,t, L̂t) (22)

as γn,t is increasing in Lt. As c′t(L̂t) > 0 from Assumption 1,
γn,t is increasing in `n,t and we deduce that `n,t > ˆ̀

n,t.
Now, let us consider T1 = {t : L̂t > Lt} along with
T2 = T \ T1 = {t : L̂t 6 Lt} and N0 = {n : λ̂n > λn}.
Suppose T1 6= ∅. From constraint (6a) and from (21), we have:

∀n∈ N0,
∑
t∈T1

ˆ̀
n,t = En −

∑
t∈T2

ˆ̀
n,t 6 En −

∑
t∈T2

`n,t =
∑
t∈T1

`n,t .

On the other hand, considering for t ∈ T1 and n /∈ N0, we
have from (20) that ˆ̀

n,t 6 `n,t, and thus:∑
t∈T1

L̂t =
∑
t∈T1

∑
n∈N0

ˆ̀
n,t +

∑
t∈T1

∑
n/∈N0

ˆ̀
n,t 6

∑
t∈T1

Lt , (23)

which is in contradiction with the definition of T1. Thus T1 =
∅ and ∀t, L̂t = Lt. We can now precise (20) with:[

λ̂n<λn and L̂t=Lt
]
=⇒[

ˆ̀
n,t<`n,t or ˆ̀

n,t=̀ n,t=`n,t or ˆ̀
n,t=`n,t=`n,t

] (24)

and similarly for (21). Indeed, if ˆ̀
n,t = `n,t (resp. if `n,t =

`n,t) then the implication holds because `n,t > `n,t (resp.
`n,t 6 `n,t). Else, ˆ̀

n,t > `n,t and `n,t < `n,t, and the
same sequence of inequalities as in (22) gives γn,t(ˆ̀

n,t, Lt) <
γn,t(`n,t, Lt), implying that ˆ̀

n,t < `n,t.
Finally, suppose that there exists n s.t. λ̂n < λn. If only

the two latter cases in (24) happen, then `n,t = ˆ̀
n,t, ∀t. Else,

there is at least one t for which ˆ̀
n,t < `n,t, so En =

∑
t

ˆ̀
n,t <∑

t `n,t = En which cannot happen. Thus, λ̂n = λn for all n
and (20) and (21) imply that `n,t = ˆ̀

n,t for all n and t.

APPENDIX B
PROOF OF THM. 3: POA UPPER BOUND

The proof relies on the notion of local smoothness introduced
in [34]. The idea is to get a tighter bound than [34] by
specifying the parameters of the affine price functions (ct)t
and by using the upper bound on Lt instead of looking at the
worst possible cases as done in [34].

Let κt
∆
= αt/βt so that ct(L) = βt(L+ κ). From [34], we

know that if there exist λ, µ > 0 and a profile ˆ̀∈ L satisfying
for each t ∈ T and each ` ∈ L:

L̂t(Lt + κt) +
L̂2
t

4
6 λL̂t(L̂t + κt) + µLt(Lt + κt), (25)

where L̂t =
∑
n

ˆ̀
n,t and Lt =

∑
n xn,t, then G is locally

λ, µ-smooth for ˆ̀, i.e. for any admissible profile ` ∈ L:∑
n∈N

bn(`) +∇nbn(`)T (ˆ̀n − `n) 6 λSC(ˆ̀) + µSC(`) ,

where SC(`) =
∑
n bn(`). In that case, it follows from [34]

that the PoA is bounded by λ/(1 − µ). We want to find the
best possible λ, µ such that (25) holds for each t ∈ T . For the
remaining of the proof, we fix t and omit subscript t in the
notations. As done in [34], we introduce:

φxy(µ)
∆
=
y(x+ κ) + y2

4 − µx(x+ κ)

y(y + κ)
, λ∗(µ)

∆
= sup
x,y>0

φxy(µ) .

λ∗(µ) is the minimum value of λ > 0 such that (25) holds with
values (λ, µ). Let us compute an explicit expression of λ∗(µ).

If x = 0, φ0,y(µ) = y+4b
4(y+κ) and

∂φ0,y

∂y
< 0 so supx,y φx,y

would be attained with y = 0 and is φ0,0 = 1. Otherwise:

0 =
∂φ

∂x
⇔ 1

y(y + κ)
(y − 2µx− µκ)⇒ x =

y − κµ
2µ

but as x > 0, this supposes that y > µκ. We compute:

φ y−κµ
2µ ,y =

1

y(y + κ)4µ

(
(y + κµ)2 + µy2

) ∆
= h(y) .

We can see that h′ vanishes on R+ at y+
∆
=

κµ2+κµ
√
µ2+1−µ

1−µ
that gives a min of h so h is decreasing then increasing. At
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the lower bound y = κµ, we get φ = κµ+4b
4(κµ+κ) = µ+4

4(µ+1) =
1
4 + 3

4(µ+1) < 1 which is not max as φ0,0 = 1. At the upper

bound y = L, we have h(L) = (L+κµ)2+µL
2

L(L+κ)4µ
= λ∗(µ). Last,

to compute the best bound infµ λ
∗(µ)/(1−µ), let us consider:

g(µ)
∆
= 4L(L+ κ)

λ∗(µ)

1− µ
=

(L+ κµ)2 + µL
2

µ(1− µ)
.

If we denote ϕ ∆
= (1 + r)2 and r ∆

= κ/L, g(µ) is minimal at
µ∗

∆
= (−1 +

√
1 + ϕ)/ϕ. We finally get our PoA bound as:

λ∗(µ∗)

1− µ∗
=

(3 + 2r)+2
√

1 + ϕ

4(1 + r)
=

1

2

(
1 +

√
1 +

1

ϕ
+

1

2
√
ϕ

)
= 1

2

(
1 +

√
1 + (1 + r)−2 + (2(1 + r))−1

)
6 1 + 3

4(1+r) .

The last inequality gives a more explicit bound and is obtained
from

√
a2 + b2 6 a+ b valid for any a, b > 0.

Next, following [34], for `, `′ ∈ L (admissible solutions):∑
n bn(`) +∇nbn(`)T (`′ − `)

=
∑
n

∑
t∈T `n,t · ct(Lt) + (`′n,t − `n,t) (ct(Lt) + `n,tc

′
t(Lt))

=
∑
t L
′
t · ct(Lt) + c′t(Lt)

∑
n

(
`′n,t`n,t − `n,t

2
)

6
∑
t L
′
t · ct(Lt)+c′t(Lt) · Lt

2

4

=
∑
t βt

[
L′t(Lt + κt)+

Lt
2

4

]
(26)

6
∑
t βt [λL′t(L

′
t + κt) + µLt(Lt + κt)] (27)

= λSC(`′) + µSC(`) ,

where (27) is valid if (λ, µ) is chosen such that:

∀t ∈ T , λ >
(Lt + κtµ)2 + µL

2

t

Lt(Lt + κt)4µ

∆
= λ∗κt(µ) .

Let us denote t0
∆
= argmin

t
κt and choose µ∗ ∆

= µ∗t0 , λ∗ ∆
=

λ∗κt0 (µ∗) (the optimal (λ, µ) for t0), then we have to check
that for all t ∈ T , λ∗ > λ∗κt(µ

∗). For that, it is sufficient to
show that r 7→ λ∗r(µ

∗) is decreasing on [rt0 , rt], which is true
if rt < −1 +

√
1 + 1−µ∗

µ∗2 ⇐⇒ ϕrt < ϕrt0 + 2 +
√

1 + ϕrt0
with ϕr = (1+r)2, which gives condition (9) stated in Thm. 3.

APPENDIX C
PROOF OF PROP. 1: STRONG STABILITY OF G

We denote by G(`)
∆
= JF (`) the Jacobian of operator

F = (∇nbn)n∈N . Since functions bn are twice differentiable,
condition (13) is equivalent to having the matrix G(`)+GT (`)
positive definite for all ` ∈ L, that is, G(`) +G(`)T � 0.

As bn =
∑
t bn,t, with bn,t(`t)

∆
= `n,tct(Lt), is separable

in t, we can re-index the matrix G(`) to have a diagonal
block hourly matrix G(`) = diag(G1, ...GT ) , with Gt(`t)

∆
=(

∂2bn,t
∂`n,t∂`m,t

(`t)

)
n,m∈N 2

and we get for all t:

Gt(`t) +Gt(`t)
T =

(
∂2bn,t(`t)

∂`m,t∂`n,t
+
∂2bm,t(`t)

∂`n,t∂`m,t

)
n,m

.

Let t ∈ T and x ∈ RN \ {0}. Furthermore, let σ(x, `)
∆
=

xT
(
Gt(`t) +GTt (`t)

)
x. For notation simplicity, let us forget

the index t and the argument (L) in functions ct. We have:

σ(x, `)=

N∑
n=1

2x2
n(`nc

′′+2c′)+2
∑
n<m

xnxm ((`n+`m)c′′+2c′) =

N∑
n=1

2x2
n (rnγ+(1−rn)a)+2

∑
n<m

xnxm ((rn+rm)γ+(1−rn−rm)a)

with rn
∆
= `n/L, a = 2c′(L) and γ ∆

= 2c′(L)+Lc′′(L). Then:

σ=a
∑
n

x2
n+a

(∑
n

(
1−rn

(
1−γa

))
xn

)2

−(a−γ)2

a

∑
n,m

rnrmxnxm

which is the sum of three quadratic forms: q1(x) = a
∑
x2
n

which has one eigenvalue a of multiplicity N , q2(x) =

a
(
xT vT vx

)
with vn

∆
=
∑
n 1 − `n

L

(
1− γ

a

)
of rank one

whose nonzero eigenvalue is a||v||22, and a negative form of
rank one q3(x) = − 1

a (a− γ)
2
(∑

n,m
`n
L
`m
L xnxm

)
whose

nonzero eigenvalue is − 1
a (a− γ)

2∑
n

(
`n
L

)2
.

We deduce that the quadratic form q1 + q2 is positive defi-
nite, and that its eigenvalues are a with multiplicity N−1 and
a(1 + ||v||22) with multiplicity 1. Next, we use the following
result from perturbation theory:

Theorem 7 (Horn and Johnson, 2012, [49, p367] ). Let A,E ∈
Mn be two Hermitian matrices and let λM1 6 ... 6 λMn
denotes the (real) ordered eigenvalues of an Hermitian matrix
M . Then we the following inequalities hold:

∀k = 1 . . . n, λE1 6 λA+E
k − λAk 6 λEn

and
∣∣λA+E
k − λAk

∣∣ 6 ρ(E) = |||E|||2 .

Applying this theorem with A = q1 + q2 and perturbation
E = q3 we get that the smallest eigenvalue λA+E

1 of σ verifies:

λA+E
1 > min {Sp(q1+q2)} − (a−γ)2

a

∑
n

r2
n

= a
(

1−
(
1−γa

)2∑
n r

2
n

)
.

Replacing a and γ, we can get the condition of Assumption 2.

APPENDIX D
PROOF OF THM. 4: CONVERGENCE OF CBRD

The key of the proof is that, under Assumption 3, the game
is an exact potential game [43] with convex potential:

Φ(`) =
∑
t∈T αtLt + βt

2 (L2
t +

∑
n `

2
n,t) ,

that is, for any ` ∈ L and any n, ∇nΦ(`) = ∇nbn(`). Thus,
the NE corresponds to the minimum of Φ and we have, for any
` ∈ L, argmin

`n∈Ln
bn(`n, `−n) = argmin

`n∈Ln
Φ(`n, `−n). Therefore,

running Algo 1 is equivalent to performing an alternating block
coordinate minimization on Φ. According to [44, Thm. 6.1]:

Φ(`(k))− Φ(`NE) 6 1
k × 2MN2R2Ω , (28)

with M = maxnMn = 2 maxt βt (max of Lipschitz constants
of ∇nbn = ∇nΦ), R = max`{

∥∥`− `NE
∥∥ ; Φ(`) 6 Φ(`(0))}
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and Ω = max{ 2
MN2R2 − 2, Φ(`(1))− Φ(`NE), 2}. But Φ is

also strongly convex, that is, for any `, `′ ∈ L:

Φ(`)− Φ(`′) > 〈∇Φ(`′), `− `′〉+ a
2 ‖`− `

′‖2 (29)

with a = 2 mint βt. Also, the minimality of `NE on the convex
set L implies that for any ` ∈ L, 〈∇Φ(`NE), ` − `NE〉 > 0 .
Then from (29) , we get for any k > 0:

a

2

∥∥∥`(k)−`NE
∥∥∥2

6 Φ(`(k))−Φ(`NE) + 〈∇Φ(`NE), `NE−`(k)〉

6 Φ(`(k))− Φ(`NE) ,

and from (28) we get the convergence result of Thm. 4.

APPENDIX E
PROOF OF THM. 5: CONVERGENCE OF SIRD

We analyze the convergence of the sequence (Tkγ(`))k

where [Tγ(`)]n
∆
= ΠLn (`n − γ∇nbn(`n, `−n)). First notice

that the unique NE of the game `NE is the unique fixed point
of Tγ i.e. `NE = Tγ(`NE). The idea is then to prove that Tγ
is a η-contraction, for a given norm ‖ · ‖ which will imply the
convergence rate ‖T k

(
`(0)
)
− `NE‖ 6 ηk‖`(0) − `NE‖ , for

any initial condition `(0) ∈ RN×T .
Let ‖ · ‖ denote the Euclidean norm on Rd for any positive

integer d. As the projection on a convex set is nonexpansive
[50, Corollary 12.20], we get for `, `′ ∈ L:

‖Tγ(`)− Tγ(`′)‖2 =
∑N
n=1 ‖[Tγ(`)]n − [Tγ(`′)]n‖2

=
∑N
n=1 ‖ΠLn(`n − γ∇nbn(`))−ΠLn(`′n − γ∇nbn(`′))‖2

6
∑N
n=1 ‖`n−`′n+γ(∇nbn(`′)−∇nbn(`))‖2

=
∑N
n=1 ‖`n−`′n‖2 + γ2‖∇nbn(`)−∇nbn(`′)‖2

− 2γ 〈∇nbn(`)−∇nbn(`′), `n−`′n〉 .

Since ∇nbn is Mn-Lipschitz for each n, we have∑N
n=1 |∇nbn(`) − ∇nbn(`′)|2 6 NM2‖` − `′‖2 where

M
∆
= maxnMn. From a-strong stability (Def. 3), we get:

‖Tγ(`)− Tγ(`′)‖2 6 η‖`− `′‖2 ,

with η
∆
= 1 + NM2γ2 − 2γα. Minimizing on γ > 0 gives

γ = α
NM2 and η = 1− α2

NM2 < 1, and Tγ is a contraction.

APPENDIX F
PROOF OF THM. 6: CONSISTENCY OF DR PROCEDURE

First, the NE is unique in any “subgame” G(t) played on the
subset T (t) = {t, . . . , T } (considered at t in the procedure).
In the case where we assume that the operator F (cf Def. 3)
is strictly monotone on L, then the operator F (t) : `(t) 7→
[∇

`
(t)
n
bn(`(t))]n∈N restricted to the set T (t), is also strictly

monotone on L(t) =
∏
n L

(t)
n . In the case where we consider

Assumption 1 and that the sets (Ln)n have the structure (6),
this structure is inherited for the sets (L(t)

n )n so Thm. 2 can
be applied on the game G(t) to ensure the uniqueness.

Let t0 ∈ {1, . . . , T − 1} and G(t0) the DR-game played at
t0. Let `(t0) be the unique NE of G(t0). From the variational
inequality characterization of an NE, we have:

〈F (t0)(`(t0)),λ(t0) − `(t0)〉 > 0, ∀λ(t0) ∈ L(t0) . (30)

Let G(t0+1) the DR-game on hours {t0 + 1, . . . T} with up-
dated strategy sets L(t0+1)

n
∆
=
{

(`n,s)s>t0 |(`
(t0)
n,t0 , [`n,s]s>t0) ∈

L(t0)
n

}
for each n. Let λ(t0+1) ∈ L(t0+1), then λ(t0) ∆

=

(`
(t0)
t0 ,λ(t0+1)) ∈ L(t0).

0 6 〈F (t0)(`(t0)),λ(t0) − `(t0)〉
= 0 + 〈F (t0+1)((`(t0)

s )s>t0),λ(t0+1) − (`(t0)
s )s>t0〉 ,

which shows, from (30), that (`
(t0)
s )s>t0 is an NE of the game

G(t0+1). From the uniqueness of the NE in G(t0+1), we finally
conclude that (`

(t0)
s )s>t0 = `(t0+1).
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Île-de-France and member of CMAP (Centre de
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