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Abstract—In Demand Response programs, price incentives
might not be sufficient to modify residential consumers load
profile. Here, we consider that each consumer has a preferred
profile and a discomfort cost when deviating from it. Consumers
can value this discomfort at a varying level that we take
as a parameter. This work analyses Demand Response as a
game theoretic environment. We study the equilibria of the
game between consumers with preferences within two different
dynamic pricing mechanisms, respectively the daily proportional
mechanism introduced by Mohsenian-Rad et al, and an hourly
proportional mechanism. We give new results about equilibria
as functions of the preference level in the case of quadratic
system costs and prove that, whatever the preference level, system
costs are smaller with the hourly mechanism. We simulate the
Demand Response environment using real consumption data
from PecanStreet database. While the Price of Anarchy remains
always close to one up to 10−3 with the hourly mechanism, it
can be more than 10% bigger with the daily mechanism.

I. INTRODUCTION

On the path to a “grid of the future” [1], Demand Side
Management (DSM) and Demand Response (DR) programs
are envisioned to provide a substantial support to face the
challenges to come: integration of new and additional electrical
usages, e.g. electric vehicles [2], transition to a significant
penetration rate of Renewable Energy Sources [3] and a decen-
tralized energy production and reduction of carbon emissions.
Various models and mechanisms have been proposed in the
Smart Grid literature to operate the flexibility offered to the
system by DSM [4]. Among them, we focus in this paper
in the line of game theoretic schemes, introduced with the
seminal paper [5]. In this case, an “energy consumption game”
is defined between consumers — considered as players. With
this interpretation, an Independent System Operator has the
responsability to design good rules to induce an efficient
collective behaviour of flexible consumers (typically, at Nash
equilibria), aligned with electricity system objectives. This ef-
ficiency is often measured with system metrics, e.g. generating
or distributing electricity at a reasonable cost / emission level,
limited impact on electrical assets, etc. This efficiency can also
integrate consumer metrics, which leads to considering social
cost as the sum of system cost and consumers objectives.

Individual and personal constraints will influence the be-
haviour of flexible consumers. In turn, many papers have
adressed the question of modeling individual effort of con-
sumers in the context of DSM. Several works relate this indi-

vidual effort to the desired indoor temperature. For instance,
[6] considers a distance between “desired indoor temperature”
profile and effective one, weighted by an occupancy variable.
Another standard model consists in penalizing the delay be-
tween possible operation time (e.g., the starting period of avail-
ability) and effective one of a flexible electrical appliance [7]–
[9]. In this case, the cost is generally linear with the waiting
time (and sometimes weighted by the power of considered task
as in [9]). A different approach in [10] considers as a metric
for uncomfort of residential consumers the colour quality of
a “smart lighting”. Note that in all of the aforementioned
metrics, the total flexible energy consumed is fixed, and
consumption flexibility consists only in temporal scheduling
of this fixed amount. Individual effort made by consumers
consists then of a temporal preference for consumption. As a
result, these metrics can be formulated as particular cases of
the framework that we will propose in this paper.

Other works such as [11]–[13] rather consider an individual
utility term that depends on the total flexible energy consumed;
a standard representation of this utility is made with an
increasing and concave function of total amount of flexible
energy (a quadratic function with a saturation threshold is
often used, as mentioned in [4]). In this model, consumers can
receive no energy at all and it is assumed that their satisfaction
increases with the volume of energy they consume.

Whatever the metrics considered for the individual con-
sumer preference, to the best of our knowledge no study
has been made on the impact of the weight given to this
preference on the consumers behaviour. More precisely, this
weight will influence the induced equilibrium in the associated
consumption energy game, which will impact the system
efficiency. This is precisely the issue addressed in this paper.

In this work, we will distinguish standard metrics of ef-
ficiency in a game: the system cost and the social cost. We
will study as well the Price of Anarchy (PoA) [14], a standard
measure of efficiency in a game, and a measure called Price
of Efficiency defined to be similar to the Price of Anarchy on
the system operator side. While the study of such indicators
in energy consumption games has been done previously (see
[5] or [2] which exhibit games where PoA = 1), the analysis
of the evolution of these indicators with respect to the weight
on individual effort term is a novelty adressed here.

This paper brings several contributions. We extend the stan-



dard model of an energy consumption game among consumers,
studied in [15], by adding individual temporal preferences.
Next, we give theoretical results in this extended framework
about the impact of preferences on the equilibria of the game
and the efficiency of those equilibria. For that, we analyse
the induced social cost and system costs. Last, we present
numerical results on a realistic test case, using consumption
data from PecanStreet database [16]. In particular, we show
that the equilibrium induced by the hourly billing mechanism
[17] is robust to the level given to preferences.

This paper is organized as follows: Sec. II introduces the
notion of consumers temporal preferences and defines the
energy consumption game model. In Sec. III, we define the
main metrics of our study: we recall the definition of the Price
of Anarchy and define the Price of Efficiency. In Sec. IV, we
give theoretical results and properties on the formulated model.
We present explicit results on the equilibria in a simplified
framework. Last, Sec. V is devoted to numerical experiments
on a realistic framework, where we simulate the equilibria
among thirty Texan residential consumers in January, 2016.

II. CONTEXT AND ENERGY CONSUMPTION GAME

The model of this work falls within the class of DSM studies
where the interaction of individual consumers is coordinated
introducing an energy consumption game, as in [5]. While all
the proposed results could be applied to numerous operational
frameworks, the one described here consists in the interaction
between a provider and its set N = {1, · · · , N} of consumers
in a given day. As opposed to [5] which does not show any
preference for consumers and suppose that they are indifferent
to any consumption schedule as soon as it satisfies their
constraints, here we will focus on the integration of individual
preferences of consumers into their objectives.

Indeed, consumers tend to have a “natural” or preferred
consumption profile, and asking them to deviate from it might
be inconvenient or decrease their comfort. Individual utility
functions have been previously used through different models.
A common approach (see for instance [12] and [13]) is to
consider that a consumer’s utility can be modeled as an
increasing function of the total energy he receives. Here, on the
contrary, we keep the assumption made in [5] that consumers
have flexible appliances that need a fixed quantity of energy
per day, and this demand must be satisfied each day. However,
we assume that consumers are not indifferent to the time they
can use electricity and therefore use their appliances.

A. Introducing users temporal preferences

From the provider’s point of view, only the load profile
asked by each user n, (`hn)h∈H matters, whereH is the discrete
set of time periods considered. However, that may not be
the case for users: for instance, one would like to charge
an Electric Vehicle (EV) battery as soon as possible in case
of unscheduled need (Plug-and-Charge), or one would like to
turn on the heating system in a household at precise time
periods ([6]), etc. We denote user n’s preferred or desirable
consumption profile by the vector ˆ̀na = (ˆ̀hna)h for his flexible

appliance a. As a result, user n would like to receive the power
profile (ˆ̀hn)h := (

∑
a
ˆ̀h
na)h and, if he has no incentives to do

otherwise, this profile will be his actual one. Deviating from
the profile ˆ̀

n decreases the comfort or utility of consumer
n. To model this fact, we introduce the individual utility
un(`n) of consumer n as the opposite of the squared distance1

between the actual consumption profile of consumer n, `n, and
his preferred profile ˆ̀

n:

un(`n) := −ωn
∑
h(`

h
n − ˆ̀h

n)
2 , (1)

where the weight ωn indicates how much user n values the
distance to his preference. As some users will give more
importance to their electricity bills (defined below) and some
others to their utility, in a general framework we assume that
each user could use a different weight ωn in this model.

B. Users billing mechanism

As done in [5], [15], we suppose that the providing costs on
each period h are represented as a quadratic function C̃(Lh) of
the total load Lh = `hNF+`

h, where `hNF denotes the aggregated
nonflexible load at period h and `h the flexible part:

C̃(Lh) := ã0 + ã1L
h + ã2(L

h)
2
. (2)

The surplus cost induced by the flexible part of the load `h,
at time h, denoted by Ch(`h), can be deduced as:

Ch(`
h) : = C̃(Lh)− C̃(`hNF) = a1,h`

h + a2(`
h)2 (3)

with a1,h :=
(
ã1 + 2ã2`

h
NF

)
and a2 = ã2. Even if the cost

function for the provider (2) does not depend on time, the
nonflexible load profile `hNF induces a difference in the costs
(Ch)h∈H between the different time periods h ∈ H.

In this paper, we consider that the nonflexible part of the
load is managed and billed in a distinct process, e.g., in a
standard contract. We focus on DR billing mechanisms for
the flexible part of the load. Through this study, we will
consider two different billing mechanisms which, in practice,
would require a “two-way” communication system [1], which
enables the system operator to send its price functions (Ch)h
and aggregated load (`h)h and users to send back their con-
sumption profile `n. First, we consider the Daily Proportional
(DP) billing mechanism introduced in [5]: we assume that the
system costs Ch(`h) induced by the flexible load at time h:

`h :=
∑
n `

h
n (4)

are shared among users proportionaly to their total flexible
consumption on the entire day En =

∑
h∈H `

h
n. Formally,

each consumer will pay the daily bill:

bDP
n (`n, `−n) =

En
E

∑
h∈H

Ch(`
h) , (5)

where `−n = (`m)m 6=n and E :=
∑
nEn. We will compare

its efficiency to the natural “congestion” Hourly Proportional
(HP) billing mechanism introduced in [17], where system costs
on each period are shared among consumers respectively to

1In general, one could use un(`n) := −ωnd(`n, ˆ̀n) where d(., .) is an
arbitrary metric. For simplicity and computational purposes, we use d = ‖.‖2.



their consumption on this period. Formally, the daily bill bHP
n

of user n for his flexible consumption is2:

bHP
n (`n, `−n) =

∑
h∈H

`hn
`h
Ch(`

h) . (6)

Intuitively, with bHP
n , users are more impacted by their actions

to use expensive/cheap time periods than with bDP
n where the

costs induced by actions are “averaged” over the day. This
property helps to interpret the results of Sec. IV and Sec. V.

C. Energy consumption game

To analyze the impact of the importance given to users’
temporal preferences, we consider through this work the
parametrized users’ objective functions:

fαn (`n, `−n) := (1− α)bn(`)− αun(`) (7)

where the preference factor α ∈ [0, 1] indicates the weight
given to user n’s preference3 in comparison to his bill bn. We
get the following optimization problem for user n:

min
`n∈RH

fαn (`n, `−n) (8a)

s.t.
∑
h∈H `

h
n = En, (8b)

`hn ≤ `hn ≤ `
h

n,∀h ∈ H . (8c)

Constraint (8b) expresses that a fixed daily amount of energy
is required for the flexible appliances of user n (EV battery,
washing machine...). Due to physical limits of his electrical
items or personal constraints, the power given to n is bounded
(8c). We denote more compactly by Ln the feasible set of user
n, given by the polytope (8b), (8c), and L := L1 × · · · ×LN .
When α = 0, user’s preference ˆ̀

n has no influence on his
behaviour, while when α = 1, the user gives no importance to
bn and only wants to minimize −un: his resulting load profile
will be exactly his preference ˆ̀

n.
As fαn depends on the consumption of n but also on other

users, this induces a game between users [19] denoted by
Gα := (N ,L, (fαn )n). We will use the notations GDP

α and GHP
α

when we specify the billing mechanism according to the DP
rule (5) or HP rule (6). The importance that each user gives
to his utility function un in comparison to his bill bn, through
the parameter α, will change the set of Nash Equilibria (NE)
of the game Gα given by:

LNE
α := {` ∈ L : ∀n, ∀`′n ∈ Ln, fαn (`n, `−n) ≤ fαn (`′n, `−n)}.

III. SOCIAL COST VERSUS SYSTEM COSTS

An Independent System Operator is interested in both an
efficient electricity network and the welfare of the consumers.
Starting with the latter, we define the social cost of the set of
consumers as the sum of their objective functions:

SCα(`):=
∑
n∈N

fαn (`)= (1−α)
∑
n∈N

bn(`)−α
∑
n∈N

un(`n) . (9)

2Introducing per-unit prices ch := Ch(`
h)/`h, the bill of n can also be

formulated in the “congestion” form: bHP
n (`) = `hnch(`

h) analyzed in [18].
3We could extend this study by using different (αn)n for different users.

To quantify the efficiency of a billing mechanism in a game,
we consider the standard notion of Price of Anarchy (PoA)
introduced by Koutsoupias and Papadimitriou. The PoA mea-
sures the gap between the minimal social cost (9), and the
social cost induced by the worst equilibrium of the game.

Definition 1 ([14]): Price of Anarchy (PoA).
Given a game G, XNE

G its set of Nash Equilibria and SC∗ its
minimal social cost, the price of anarchy of G is given as:

PoA(G) :=
(
sup`∈XNE

G
SC (`)

)
/ SC∗ . (10)

From the provider’s point of view, only the costs induced
for the system, without users personal utilities, matters: we
denote by C the total system costs function, defined as the
providing costs induced by a consumption profile (`h)h∈H:

C(`) :=
∑
h∈H Ch(`

h) . (11)

Note that in the particular billing mechanisms considered in (5)
and (6), we assume that the provider costs are shared among
users4, so that we have the equality C(`) =

∑
n bn(`).

We introduce a measure similar to the PoA (10), but that
will be more relevant for a provider that is more interested
in the system costs C and does not have access to the utility
functions (un)n of its users:

Definition 2: Price of Efficiency (PoE).
Given a game G, XNE

G its set of Nash Equilibria and its
minimal feasible system costs C∗ := min`∈L C(`) , the price
of efficiency of G is given as:

PoE(G) :=
(
sup`∈XNE

G
C (`)

)
/ C∗ . (12)

Observe that PoA ≥ 1 and PoE ≥ 1. Following (7), one can
notice that for α = 0, PoE(Gα) = PoA(Gα). In general, the
PoA and PoE will be different as shown below.

IV. PROPERTIES

A. Potential property, existence and uniqueness of NE

We start by showing that the considered games have the
property of potential (see [20]).

Theorem 1: GDP
α is a weighted potential game with potential:

WDP
α = (1− α)

∑
h∈H

Ch(`
h)− α

∑
n

E

En
un(`n) . (13)

Proof: ∀n, ∇nfαn = En

E ∇nW
DP
α , we conclude from [20].

With the billing mechanism HP, we need an additional as-
sumption on the system cost functions to get a similar result:

Theorem 2: If we consider quadratic costs (2), GHP
α is an

exact potential game with potential:

WHP
α =(1−α)

[∑
h∈H

a2,h
2

(
(`h)

2
+
∑
n(`

h
n)

2
)
+a1,h`

h

]
−α
∑
n∈N

un(`) .

(14)
Proof: Similarly to the proof of Thm. 1, ∀n,∇nfαn = ∇nWHP

α .
From the fact that WDP

α and WHP
α are strictly convex and

from [20], we can deduce the existence and uniqueness of NE:

4This assumption could be relaxed, as done in [5], by adding a ratio profit
κ > 1 for the provider, so that we have the equality

∑
n bn(`) = κC(`).



Corollary 1: In the games GDP
α and GHP

α there exists a unique
Nash Equilibrium corresponding respectively to the minimum
argument of WDP

α and of WHP
α over the set L.

Corollary 1 extends the results of [5] which gives the unique-
ness of NE in the particular case of α=0 with the DP billing.

A natural algorithm to compute a NE is to run the Best
Response Dynamics (BRD), as defined below.

Definition 3 ([21]): Best Response Dynamics (BRD).
At each iteration k, a user nk is randomly chosen and solves
problem (8) to optimum `∗nk

, with load of others `(k)−nk
fixed

(nk best responses to the others). We update `
(k+1)
nk = `∗nk

.
From Thm. 1 and Thm. 2, we deduce the convergence of BRD:

Corollary 2: In GDP
α and GHP

α , BRD is equivalent to a block
coordinate minimization of the potential function. Hence, it
converges to the unique NE of the game (see [22]).

B. Theoretical results on a simplified framework

In this section, we consider that the set H is reduced to
two time periods H := {P,O} which represent for instance
the Peak and Offpeak times. For computational purposes, we
consider that the system costs are reduced to a quadratic term:

∀h ∈ H, Ch = (`h)2 , (15)

and there is no nonflexible part as in the general case described
in Sec. II-B. Each consumer n has a preference weight ωn = 1,
a preferred profile (ˆ̀Pn ,

ˆ̀O
n ), satisfying ˆ̀P

n + ˆ̀O
n = En as in

(8b). Without loss of generality, we assume ˆ̀P ≥ E
2 ≥ ˆ̀O.

Power constraints (8c) are replaced by positivity `hn ≥ 0.
1) Nash equilibrium: From the KKT conditions of optimal-

ity, we get the following result:
Theorem 3: Assume that for all n ∈ N , we have:

ˆ̀P
n

En
+

1

2
≥

ˆ̀P

E
, (16)

then, for α ∈ (0, 1], the unique NE of GDP
α is given by:

`Pn = ˆ̀P
n + En

E
1−α
2 (ˆ̀O − ˆ̀P ) , (17)

with symmetric expression for `On . For α=0, the KKT system
is degenerated, and any (`hn)n satisfying (21) below is a NE.

Assume that for all n ∈ N , we have:

2(N − 1)ˆ̀Pn ≥ (ˆ̀P − ˆ̀O)− En , (18)

then, for α ∈ [0, 1], the unique NE of GHP
α is given by:

`Pn = ˆ̀P
n + 1−α

2(1+α)

(
φ(α)(ˆ̀O − ˆ̀P ) + (ˆ̀On − ˆ̀P

n )
)
, (19)

with symmetric expression holding for `On , and with:

φ(α) := 2α
(1+α)+(1−α)N ∈ [0, 1] . (20)

One can check that the positivity of the offpeak load `On in
(17) and in (19) is always verified. The positivity of the peak
load `Pn is a consequence of assumptions (16) and (18).

We consider that (16) and (18) hold through all this Section.
Corollary 3: The aggregated load at the NE is given by:

for GDP
α , `P = E

2 + α (ˆ̀P−ˆ̀O)
2 , (21)

for GHP
α , `P = E

2 + φ(α) (
ˆ̀P−ˆ̀O)

2 . (22)

Fig. 1: Evolution of PoE-1 with costs (15) and N = 5 users.
For all α, HP billing is more efficient for the system than DP.

With HP and DP, the aggregated load evolves to the pre-
ferred profile when α goes to one but, with the HP mechanism,
this evolution is influenced by the number of players N .

2) System Costs: The total system costs C = (`P )2+(`O)2

at the equilibrium are given from (21) and (22) by:

for GDP
α , CDP(α) := 1

2

(
E2 + α2(ˆ̀P − ˆ̀O)2

)
, (23)

for GHP
α , CHP(α) := 1

2

(
E2 + φ2(α)(ˆ̀P − ˆ̀O)2

)
. (24)

On Fig. 1, we see that the PoE is increasing with α in both
cases (the proof is straightforward from (23) and (24)), and
that it is always smaller with the HP billing, as shown below:

Theorem 4: The system costs induced by the equilibrium
with HP are always smaller than with DP, or equivalently:

∀α ∈ [0, 1], PoE(GHP
α ) ≤ PoE(GDP

α ) (25)

and the inequality is strict for α ∈ (0, 1).
Proof: First, note that in (12), the minimal system cost C∗ does
not depend on α, so that C and PoE are proportional. From
the expressions (23) and (24), we get that:
CDP(α) − CHP(α) = α2(ˆ̀P−ˆ̀O)2

2

(
1− 4

(N(1−α)+(1+α))2

)
> 0

because ∀α ∈ (0, 1), 4
(N(1−α)+(1+α))2 < 1⇐⇒ N > 1.

Fig. 1 shows the evolution of the PoE induced by the NE of
Gα, in the case of N = 5 players that have a flexible energy
En = 1 that they prefer loading totally on peak hour (ˆ̀Pn = 1).

3) Social Cost: If users do not care about their bills but
only on their utility (α = 1), they choose their preferred profile
(ˆ̀Pn ,

ˆ̀O
n ). As a result, the social cost will be exactly zero. On

the opposite, if consumers only care about their bills (α = 0),
[5] shows that users will reach the optimal system cost in GDP

0

(the potential WDP
0 is equal to the system costs) while [15]

shows that the equilibrium in GHP
0 will stay close to the social

optimum (it is even optimal in the framework of this section,
as seen in (22)). However, it is not clear how the social cost
evolves with α ∈ [0, 1]. Fig. 2a shows that with both the DP
and HP mechanism, the social cost is a decreasing function of
α. We prove this in Thm. 5 for the DP mechanism.



Fig. 2: Evolution of Social Cost and PoA-1 with costs (15).
Social Cost always decreases with α. The PoA is unimodal
and with DP, it reaches its maximum at a critical level of
α ' 0.72, where it is more than 10% larger than with HP.

To this end, considering the expressions of the equilibrium
in GDP

α from (17), we get the induced social cost:

SCDP
α = (1− α)

[
E2

2 + D2

2 (α2 + VE(1− α)α)
]

(26)

with E :=
∑
n∈N En, D := (ˆ̀P − ˆ̀O) and VE :=

∑
n
E2

n

E2 .
Theorem 5: SCDP

α is a decreasing function of α.
Proof. ∂αSCDP

α =D2

2

[
−3(1−VE)α2+2(1−2VE)α

]
+D2VE−E2

is always negative. Details are omitted here for brevity.
We did not manage to prove a symmetric result for SCDP

α .

V. NUMERICAL EXPERIMENTS

In this Section, we present numerical results on the sensi-
bility of the equilibria of GDP

α and GHP
α to α, in a realistic

framework. We simulate the games GDP
α and GHP

α and the
convergence to the equilibria day by day on the set of the thirty
one days of January 2016, which we denote by D, each day
being decomposed by a hourly timeset H = {0, 1, . . . , 23}.

A. Parameters

a) Consumers: We extracted N = 30 residential con-
sumption profiles of Electric Vehicles (EV) owners from
PecanStreet Inc. [16], a database of residential consumers in
Texas (U.S.). Each consumer has a nonflexible consumption
(`hNF,n)h (lights, cooking, TV...) and we consider EV charging
as the flexible usage. We take the EV historical profile of user
n as its preferred profile (ˆ̀hn)h, and assume it corresponds to
its flexible energy need En :=

∑
h
ˆ̀h
n. For power constraints

(8c), we take `hn = 0 and `
h

n equal to the max observed value
if hour h was ever used by n and `

h

n = 0 otherwise.
b) System Costs: As explained in Sec. II-B, we suppose

that system costs are, for each time h, function of the total
load Lh = `hNF + `h, and are given in dollar cents as
C̃(Lh) = 71.1 − 4.17Lh + 0.295(Lh)2. To compute those
coefficients, we make an interpolation based on three load
values and three corresponding prices (Ch(Lh)/Lh). The three
load values are the mean (33.8kW), min (17.8kW) and max
(58.9kW) values of the nonflexible load per hour aggregated
over the set N of consumers in all hours of January, 2016.
The three corresponding prices are those proposed by the

Fig. 3: Aggregated consumption profiles at equilibrium GHP
α

for α = 0, 0.5 and 1 on day 10/01/2016 with 30 users.
The equilibrium profile converges to (ˆ̀h)h when α→ 1.

Texan provider Coserv ([23]): 8.0¢/kWh for base contracts,
14.0¢/kWh (Peak) and 5.5¢/kWh (OffPeak) in Time-of-Use
contracts. From (3), the cost of flexible load is given by:

Ch(`
h) := (−4.17 + 0.590`hNF)`

h + 0.295(`h)2 . (27)

To ensure that bn and un are of the same order of magnitude,
we use a common factor in (1) of ωn=ω := C∗∑

n‖`∗n− ˆ̀
n‖2 =

49.1¢/kWh2 with C∗=C(`∗)=min` C(`) the optimal costs.
Note that for α = 1, SC∗α = 0 = SCDP

α = SCHP
α so the PoA

is not defined, but Fig. 4 shows that limα→1 PoA(Gα) = 1.

B. Results

For both mechanisms HP and DP, we compute the NE by
playing a BRD (Def. 3) with a limiting number of 150 BR
iterations, which in practice was sufficient for convergence.

The optimization problem (8) is a quadratic program that
we solve with the optimization solver Cplex 12.6. Playing the
BRD takes around 2.5sec. for each of the 50 values of α and
each day in D. The total simulation time was 3160 sec. with
an Intel Xeon CPU E3-1240v3@3.4GHz×8 run on 5 threads.

Fig. 3 shows the different aggregated profile (`h)h =
(
∑
n `

h
n)h at the equilibrium of GHP

α on January, 10, chosen
arbitrarily in D. We can see a significant variation (more than
15%) on the aggregated load when α changes.

From Fig. 4, we see that at α = 0, there is a very small
PoA for the HP mechanism (see [15] for a deeper analysis)
while DP achieves optimality. However, when α grows the HP
mechanism becomes much more efficient than DP in terms of
PoA (Fig. 4) and PoE (Fig. 5), as already seen in the simplified
framework of Sec. IV-B. We observe that, in Sec. IV-B as in
this realistic case, PoA(GDP

α ) is an unimodal function of α.
Fig. 4 shows that the PoA induced by the equilibrium of GHP

α

remains very low (it is maximal at α = 0 with PoA=1.0015
and then decreases) while the PoA of DP reaches a maximum
of 1.122 at α=0.06: this billing mechanism is much less
robust to consumers’ preferences. This lack of robustness is
underlined by the important discrepancy between the minimal
and maximal PoA values over our set of 31 days. Fig. 5 shows



Fig. 4: Evolution of PoA-1 (mean on days) with α.
HP is more robust and has a smaller PoA than DP.

Fig. 5: Evolution of PoE-1 (mean on days) with α.
For α > 3 · 10−4, the equilibrium induced by the HP billing
is also more efficient in terms of system costs.

that the PoE, as a function of α, is much more concave for
the DP mechanism, resulting in larger system costs on a wide
range of α (the two curves intersect at α ' 3 · 10−4). As a
result, the HP mechanism will also be more interesting for the
provider. For α ≤ 3 · 10−4 the system costs are bigger for HP
than DP because of the small PoA mentioned before [15].

VI. CONCLUSION

We considered a game theoretic model to study the behavior
of residential consumers in a DR program. We formulated an
energy consumption game with a temporal preference term in
each user’s cost function. We gave several theoretical results
on a simplified test case and showed by simulations that those
results still hold in a realistic framework where consumers
have a nonflexible load. Without consumers preferences, the
Daily Proportional billing reaches the optimal social cost and
is more efficient than the Hourly Proportional billing which is
not exactly optimal. When we add the temporal preference
term, the Hourly Proportional billing becomes much more
advantageous than the Daily Proportional mechanism in terms
of social cost and in terms of costs induced for the provider.

Several extensions of this work could be considered. First,
the theoretical results could be extended to take into account
a nonflexible part, or considering general functions instead of
a quadratic model for system costs. Besides, we could study

a dynamic population of users who have the choice to remain
in the demand response program or not: if consumers are not
satisfied with the program, they might consider another kind
of contract or suscribing a more competitive provider.
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