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Abstract

Load aggregators are independent private entities whose goal is to optimize energy consumption
flexibilities offered by multiple residential consumers. Although aggregators optimize their decisions in
a decentralized way, they are indirectly linked together if their respective consumers belong to the same
distribution grid. This is an important issue for a distribution system operator (DSO), in charge of the
reliability of the distribution network, it has to ensure that decentralized decisions taken do not violate
the grid constraints and do not increase the global system costs. From the information point of view,the
network state and characteristics are confidential to the DSO, which makes a decentralized solution even
more relevant. To address this issue, we propose a decentralized coordination mechanism between the
DSO and multiple aggregators that computes the optimal demand response profiles while solving the
optimal power flow problem. The procedure, based on distribution locational marginal prices (DLMP),
preserves the decentralized structure of information and decisions, and lead to a feasible and optimal
solution for both the aggregators and the DSO. The procedure is analyzed from a mechanism design
perspective, and different decentralized methods that could be used to implement this procedure are
presented.

Keywords: Decentralized Systems, Demand Response, Mechanism Design, Load Aggregator, Distri-
bution Locational Marginal Prices, AC Optimal Power Flow.

Introduction

Context. The management of electricity consumption flexibilities, or Demand Response [1], offered by
new usages such as electric vehicles and smart appliances, is considered as a key component of modern
electricity systems. It will help to increase the share of renewable energy production, reduce carbon
emissions and ensure the grid stability and resilience. In this context, aggregators are new actors of
the electricity system, whose role is to aggregate a large number of individually negligible consumption
flexibilities offered by residential or small consumers, and valuate these flexibilities on the demand response
market [2] or as a service offered to the system operator. In competitive electricity markets as in Europe
or in the United States, several Load Aggregators (LAs) can be present on the same distribution network,
implying the need for coordination. There is a hierarchical decisions structure, as explained in [2], from
the distribution system operator (DSO) in charge of the network, which interacts with the present LAs,
each LA interacting at the lower level with a subset of affiliated end-consumers. This decentralized system
involves multiple actors that are meant to engage in decentralized decisions. However, the decisions of
LAs and of the DSO are all linked by the physical constraints of the underlying network (line capacities,
voltage limits, etc): if each LA manages its flexibilities ignoring these constraints, the resulting flows
could jeopardize the stability of the network or, from the mathematical point of view, be infeasible.
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paulin.jacquot@polytechnique.edu. This work was partially funded by Mitacs Elevation program.
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In addition to the multiplicity of actors, the information asymmetry is also a key issue in the co-
ordination: the network physical parameters (topology, line resistances and capacities, etc.) are often
considered as confidential by the DSO and not revealed to third parties, while, on the other hand, LAs
might have privacy considerations regarding the flexibilities provided by consumers.

The objective of the present paper is to provide a decentralized coordination mechanism for LAs,
based on the computation of Distribution Locational Marginal Prices (DLMPs) obtained from a conic
relaxation of the Alternative Current Optimal Power Flow (ACOPF) problem. Considering an AC model
of the network enables to take into account not only capacity constraints but also voltage and angle
constraints, which are limiting in practice in distribution networks, as stated above. The underlying idea
of the proposed mechanism is to use DLMPs, centrally computed by the DSO, as price incentives for
LAs to manage their flexibilities. Through such a procedure, the decentralized structure as well as the
asymmetry and privacy of information are preserved.

Related Works. Recent works have shown the existence of tight conic relaxations of the ACOPF
problem, with some cases of exact relaxations exact in particular for radial networks. The works [3, 4]
consider a Semi-Definite Programming (SDP) relaxation of ACOPF and show its exactness. The works
[5–7] consider different Second Order Cone Programming (SOCP) relaxations of the OPF problem and
show that the SOCP relaxations can be exact under some additional assumptions. The authors in [8]
showed that, in tree networks, the branch flow SOCP relaxation is exact whenever the SDP model [3]
is exact. Recently, Zohrizadeh et al [9] proposed a survey on the different relaxation techniques and
associated results. As SOCP is computationally simpler than SDP [10, 11], we focus in this paper on the
SOCP branch flow model of [6].

In [12], the authors propose a decomposition algorithm, based on the Cutting Plane Methods for the
decentralized coordination of several aggregators on a network. Lagrangian multipliers–associated to the
aggregated power demand equality constraint of each aggregator–are used to defined coordination signals,
but these prices are not “locational”, and power flow constraints are not considered.

Le Cadre et al [13] consider the coordination between TSO and DSO, relying on the branch flow
formulation and SOCP relaxation for the OPF problem. They compare different solutions obtained from
a centralized optimization, a generalized game and a Stackelberg model.

The idea of using DLMPs to coordinate LAs and electric vehicles charging in a decentralized fashion
appears in [14]. Scott et al [15] consider the optimization of distributed energy resources (DERs), under
the nonconvex power flow constraints of a multiphase unbalanced network. They rely on the alternating
direction method of multipliers (ADMM) to solve a distributed receding-horizon OPF and obtain DLMPs,
and show results of real experiments of their method. In [16], authors consider the radial formulation
of the OPF for distributed generators. Instead of relying on convex relaxations, they study numerically
ADMM and dual decomposition algorithms that consider different nonconvex subproblems for branches
and buses of the network.

Huang et al [17] propose to use a quadratic model to implement the decentralized procedure using
DLMPs, to coordinate LAs of electric vehicles or heat pumps. They extend their model, considering the
possibility of negative prices (subsidies) in [18]. The papers [14, 17, 18] consider a direct current (DC)
power flow model, and DLMPs are the Lagrangian multipliers associated to the capacity constraint for
each time period in the DSO optimization problem. Although DC power flow models are much easier
to solve than ACOPF problems, a DC model does not consider all existing constraints in distribution
networks such as voltage limits.

Papavasiliou [19] considers two formulations of the ACOPF in distribution networks, based on an
implicit function formulation and on the SOCP relaxation [20], and derives expressions and properties of
the DLMPs in each formulation. The SOCP formulation adopted in this paper, is the most interesting
from a computational point of view.

Liu et al [21] consider solving the original (nonconvex) ACOPF problem for the DSO to obtain DLMPs
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sent to multiple LAs to compute flexible consumption profiles satisfying consumers constraints. However,
because of its nonconvexity [6], the original ACOPF problem can be very hard to solve in practice, and
only a local optimum may be found. As the objective functions considered by LAs in [21] are linear, one
cannot ensure, as noted in [17], that the combination of the individual LAs solutions obtained through
this decentralized procedure does not necessarily correspond to the optimal solution computed by the
DSO.

Lin et al [22] propose a coordination mechanism between transmission and distribution level, con-
sidering an AC branch flow [6] model for distribution grids. Their method relies on the exchange of
information (boundary variables and lower bounds) between transmission and distribution levels.

Bai et al [23] propose to solve the ACOPF, considering different types of distributed energy resources
(DERs) as well as feeder reconfiguration and on load tap changers, involving discrete decision variables.
The authors propose to solve in a first step the problem considering the SOCP relaxation defined in [6]
with the discrete variables, to determine the optimal values of these variables. In a second step, the
discrete variables are fixed and a linearization of the SOCP problem around the optimal value is solved
to obtain DLMPs, which are then transmitted to the DERs.

The framework considered in this paper differs from the above mentioned works in at least two points.
First, the procedures proposed in the existing literature are not decentralized as, to compute the DLMPs
by solving the OPF, the authors consider that the DSO has access to all the information from the
DERs (capacities, state of charge for batteries, power bounds for LAs). A solution could be to impose
to all the DERs to provide the necessary information to the DSO in time, or that the DSO computes
an approximation of these parameters. However, another solution analyzed in this paper, is to rely on
a decentralized iterative procedure in which each DER updates its individual decisions according to a
partial information received from the DSO, and then transmit its profile back to the DSO. This solution
has the advantage to converge to a feasible power flow solution, which may not necessarily be the case
if the DSO simply transmits the DLMPS to DERs, as multiple individual profiles can emerge from the
linear programs solved by the DERs [17].

Second, most of the works [14, 17, 21, 23] consider either DCOPF or linearizations of ACOPF. In this
paper we obtain the DLMPs directly from the resolution of the branch flow SOCP relaxation of the OPF
problem [6].

Main Contributions. The main contributions brought by this paper are the following:

• we present a model of the interactions of a DSO and multiple LAs subject to the distribution
network constraints, highlighting the need for a coordination mechanism between those actors (Sec. 1);

• we review the existing results on the exactness of the SOCP relaxation for the OPF problem based
on the branch flow model, and we consider their extensions to multi-time periods framework (Thm. 1,
Thm. 2);

• we bring more insight and give additional results on the DLMPs obtained from the optimal solution
of the SOCP relaxation based on the branch flow model (Prop. 2, Prop. 3). In particular, Prop. 2 shows
the link between the DLMPs at one node and at the ancestor node. Despite of the basic nature of these
results, we are not aware of other works where they are stated for this framework;

• we provide a DLMPs-based decentralized coordination procedure (Algo. 4) between the DSO and
the LAs that respects the decentralized decision and information structure: flexibilities are computed and
managed by LAs from DLMPs incentives imposed by the DSO, and the final obtained profiles result in an
optimal solution of the ACOPF problem that can be computed by the DSO. To our limited knowledge, this
is the first paper to consider decentralized methods to solve the ACOPF branch flow model considering
demand response;
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• we consider the application of standard decomposition methods as Dual Ascent (Algo. 1) and
ADMM (Algo. 2) and show how they can be used within the proposed coordination procedure to respect
the above mentioned decentralized features. We propose a novel decomposition method (PDGS, Algo. 3)
that has the practical advantage to ensure primal feasibility at each iteration, and we prove its convergence
(Thm. 4);

• we analyze the proposed procedure based on DLMPs from a mechanism design perspective. We
show, through a counter-example, that the DLMPs-based mechanism is not incentive compatible in general
(Example 1). To our limited knowledge, this is the first time where this result is stated for this framework.
We also compare the DLMPs-based mechanism to the standard VCG mechanism, a mechanism which
satisfies the incentive-compatible property, and explain how VCG could be implemented in a decentralized
way;

• last, we provide a numerical illustration of the proposed framework, based on the extension of the
15 nodes network example considered in [19] to a multi-time periods and flexible consumption framework.
We compare numerically the application of decentralized algorithms such as ADMM and PDGS, and
compare the payments obtained under the DLMPs-based mechanism and VCG mechanism.

Structure. The remaining of the paper is organized as follows. In Sec. 1, we detail the model of the
network constraints, load flexibility aggregator and objectives. In Sec. 2, we state two theoretical results
ensuring the exactness of the SOCP relaxation for the OPF problem in multi-time periods. In Sec. 3,
we analyze the DLMPs obtained as optimal dual variables of the SOCP relaxation, and state different
properties on these values. In Sec. 4, we present different distributed algorithms that can be used to
implement the proposed DLMPs-based decentralized coordination procedure. In Sec. 5, we present the
proposed procedure from a mechanism design perspective, and we give a counter-example showing that
this procedure is not incentive compatible. We present how the VCG mechanism could be used in a
decentralized way. Last, Sec. 6 is devoted to numerical illustrations of the proposed procedure and using
two different numerical methods (ADMM and PDGS). We consider a 15-nodes network that was already
considered in the literature, and consider two time periods.

Notation. We use bold font to denote vectors (e.g. x) as opposed to scalars (e.g. x). Sets are
denoted by calligraphic letters (e.g. T ,N ,A), except P which is used to label optimization problems.
For a problem P, sol(P) denotes the set of optimal solutions of P.

1 Aggregators on Distribution Network

We consider a distribution network represented by a set of nodes N ∆
= {1, . . . , N} and given as a graph

G ∆
= (N+, E), where N+

∆
= N ∪ {0} with 0 denoting the root node and corresponding to the feeder node

(link with transportation network).
Distribution networks are usually designed such that there is no cycle in the electricity lines. Thus,

the graph G is a tree.
Each node n ∈ N corresponds to an individual household, a group of households or a commercial

building linked to the distribution network. We assume that the operation of the distribution network
and the management of flexibilities is done on a common time horizon T (e.g. a day), given as a finite
set of discrete time periods:

T ∆
= {1, . . . , T}.

1.1 Branch Flow Model and SOCP relaxation

We use the branch flow model and the SOCP relaxation introduced in [20] and also considered in [19].
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Following [19], we use pn, qn to denote active and reactive power consumption at node n: thus pn < 0
means that there is production at bus n. At the root (feeder) node n = 0, we expect that some power will
be produced (or bought from the market) and that there is no consumption: we therefore assume p0,t 6 0.
Variable vn stands for the squared voltage magnitude at bus n. Variables fn, gn and `n denote the active
and reactive power flows and the squared current magnitude on the line from n to the unique ancestor
of node n, denoted by n-. The resistance and reactance on this line are denoted Rn and Xn, while the

0 n- Rn, Xn n

fn, gn
←

p
n
,q
n

G
n
,B

n

Figure 1: Π-model and notations for line from node n to n-

shunt conductance and susceptance at node n are denoted Gn and Bn. The power flow magnitude limit
(line capacity) on line (n, n-) is denoted by Sn. Fig. 1 recalls the notation used to describe the network
parameters.

We obtain the set of branch flow equations:

vn,t−2(Rnfn,t+Xngn,t) + `n,t(R
2
n+X2

n) = vn-,t, ∀n ∈ N (1a)

fn,t−
∑

m:m−=n

(
fm,t−`m,tRm,t

)
+pn,t+Gnvn,t = 0,∀n ∈ N+ (1b)

gn,t−
∑

m:m−=n

(
gm,t−`m,tXm

)
+ qn,t−Bnvn,t = 0, ∀n ∈ N+ (1c)

f2n,t + g2n,t 6 vn,t`n,t , ∀n ∈ N (1d)

f2n,t + g2n,t 6 S2
n , ∀n ∈ N (1e)

(fn,t −Rn`n,t)
2 + (gn,t −Xn`n,t)

2 6 S2
n , ∀n ∈ N (1f)

V n 6 vn,t 6 V n , ∀n ∈ N+ (1g)

and we further denote by βn,t, λ
p
n,t, λ

q
n,t ∈ R the Lagrangian multipliers associated respectively to (1a),

(1b), (1c), and by γn,t, η
+
n,t, η

−
n,t, σn,t, σn,t > 0 the ones associated to constraints (1d), (1e), (1f), (1g). In

(1), the equality f2
n,t + g2

n,t = vn,t`n,t defining the current magnitude `n,t in the actual branch flow model,
is relaxed as the inequality (1d), which is a cone constraint (see [6] for more details), defining what we
refer to as the SOCP relaxation for the ACOPF problem.

1.2 Electricity Load Aggregators

We consider that a set A of several Load Aggregators (LAs) coexist on the distribution network. Each LA
a ∈ A manages a subset Na of the nodes in the network, such that

⋃
aNa forms a partition of N (each

node is affiliated with one LA).
The active and reactive power at each node is not fixed but flexible: the LA a ∈ A manages the flexible

net power consumption (pn,t, qn,t)t∈T of individual consumers at n for each node n ∈ Na, w.r.t. individual
constraints. We consider the possible presence of local renewable energy sources (e.g. photovoltaic panels)
that can also be managed by the LA, such that pn,t is composed of a production part pp

n,t > 0 and a
consumption part pc

n,t > 0, as:
∀n ∈ N ,∀t ∈ T , pn,t = pc

n,t − p
p
n,t . (2a)
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The constraints on the consumption of each node n are described through a global energy demand En
over the T time periods, as well as lower and upper bounds for each time period, that is:∑

t∈T p
c
n,t > En (2b)

Pn,t 6 pc
n,t 6 Pn,t , (2c)

and we denote by αn > 0 (resp. νn,t, νn,t) the Lagrangian multipliers associated to (2b) (resp. (2c).
Constraints (2b)-(2c) give a simple model for deferrable loads such as electric vehicles and water heaters,
which has been widely used [24–29].

In practice, each LA can aggregate the flexibilities offered by individual end-consumers to fit in the
model (2b)-(2c). The same idea of aggregate set of constraints in a particular form is formulated for
instance in [30], where the authors propose an aggregation procedure considering zonotopic sets instead
of the simplex structure (2b)-(2c).

We consider that active and reactive consumptions are correlated by a given ratio (depending on the
type of appliances) as:

qc
n,t = τ c

n p
c
n,t . (2d)

Each LA also controls the power (pp
n,t)n∈Na,t produced by distributed energy resources (DERs) across

its affiliated nodes Na. The DERs [23] we consider are local and renewable energy (either photovoltaic
or wind power) installed in households. We consider that the power pp

n,t produced at period t is upper
bounded by an intermittent available power Pn,t (which depends on the DERs capacities and the wind
or sun power), and can be adjusted within [0, Pn,t]. The associated produced reactive power qp

n,t can be
adjusted through the control of smart inverters [31], which gives:

0 6 pp
n,t 6 P

p
(2e)

ρp
n,t
pp
n,t 6 qp

n,t 6 ρp
n,tp

p
n,t . (2f)

We consider that DERs are used at cost zero by the LA operating them: incentives and costs can be
distributed by the LA to its affiliated households in a separate process. The study of interactions between
an LA and its affiliated consumers is beyond the scope of this paper.

We define the cost function of LA a as φa(·) and assume that it depends on the active consumption
profiles (pn)n∈Na . The cost function φa is determined by exogenous parameters (e.g. from day-ahead
electricity market prices) or by some incentives from the system operator. Thus, the local problem Pa of
LA a is formulated as:

min
xa=(pn,qn)n∈Na

φa
(
(pn)n∈Na

)
(Pa)

s.t. (2)

where xa
∆
= (pn, qn)n∈Na denote the variables of LA a ∈ A that are controlled locally by a, and pn

∆
=

(pn,t)t∈T , qn
∆
= (qn,t)t∈T .

1.3 Distribution System Operator

The Distribution System Operator (DSO) is a central, independent entity in charge of the operation of
the distribution network, which is able to impose (price) incentives to LAs.

In most of the electric systems, the DSO also bears the costs of the network losses, by buying the
necessary energy at the day-ahead market price. The corresponding fees are usually recovered by taxes
to utilities collected by the DSO.

We assume the existence of underlying energy price functions
(
ct(.)

)
t∈T modeling, for instance, an

electricity market or some production costs. We consider different possible objective functions for the
DSO:
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i) minimization of the social cost of LAs (in this case, the DSO has no proper cost function):

SC(p)
∆
=
∑
a∈A

φa
(
(pn,t)nt

)
=
∑
t∈T

ct
(∑

n∈N pn,t
)

; (3a)

ii) minimization of the total active power injected at the substation node 0 into the grid (e.g. bought
at the DA market price):

φinj(p0)
∆
=
∑
t∈T

ct(p
p
0t) =

∑
t∈T

ct(−p0t) , (3b)

where, following [17] and others, we assume that for each time period t, there is an energy cost function

which is affine and increasing, i.e., ct(x)
∆
= αtx+ βtx

2 for some αt, βt > 0.

iii) minimization of active network losses:

φloss(`)
∆
=
∑
t∈T

∑
n∈N

Rn`n,t . (3c)

From a multi-agent point of view, the objectives concern different entities: the cost φa in (3a) concerns
the LA a, while the costs (3b) and (3b) make more sense at the level of the DSO. It is thus relevant to
differentiate both cases by the following notation:

• xA
∆
= (xa)a∈A denotes the LAs variables as defined above, while φA(xA)

∆
=
∑

a φa(xa) denotes the
LAs part in the cost function;

• x0
∆
= (p0, q0,v, `,f , g) denotes the DSO variables, while φ0(x0)

∆
= φinj(p0) + αlossφloss(`) denotes

the DSO part in the cost function.

In what follows, we will assume that the DSO objective function Φ will be either φA (as the minimization
of social cost) or φ0, or a linear combination of the three objectives (3):

Φ(x)
∆
= φ0(x0) + φA(xA) .

In the decentralized framework adopted of this paper, the DSO considers the local variables xA
∆
=

(pn, qn)n∈N as fixed parameters, as those variables are managed by the LAs. Moreover, the DSO has no
access to the cost function φa of each LA a and does not consider these costs in its optimization. Thus,
the DSO faces the following optimization problem:

min
x0=(p0,q0,v,`,f ,g)

φ0(x0)

s.t. (1) .
(P0(xA))

Despite he does not control the local variables xA, the DSO is interested in finding the solution that
is socially optimal for the whole system, that is, obtaining an optimal solution of the global centralized
problem:

min
x0,xA

Φ(x) (P?)

s.t. (1− 2) .

From now on, we assume that problem (P?) has a solution:

Assumption 1. There exists (x0,xA) satisfying (1 - 2) or, equivalently, problem (P?) is feasible.

In what follows, we recall that the SOCP relaxation (P?) can be exact: a solution of this problem
will, in many cases, give an optimal solution of the original OPF problem (i.e. the same problem (P?)
with constraint (1d) written as an equality).
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2 Exactness of SOCP relaxation

In [6, 11], the authors show that, in a radial network, the SOCP relaxation P? of the nonlinear OPF
problem is exact under some specific assumptions. The first result stated below is a straightforward
extension of [6, Thm. 1] to the multi-time periods OPF problem (P?).

Theorem 1. Suppose that the objective function Φ is convex, strictly increasing in `, independent of f, g,
plus one of the following:

• Φ is nonincreasing in pc, qc > 0, and upper bounds (2c),(2d) on pc, qc are not binding (that is,
Pn,t =∞, Qn,t =∞);

• Φ is nondecreasing in pp, qp > 0, and lower bounds (2e), (2f) on pp, qp are not binding;

then the SOCP relaxation (P?) given above is exact.

The authors in [11] also consider hypotheses on the voltage magnitude constraints that should not be
binding on a strong sense. Thm. 2 below is an immediate extension of [11, Thm.1] to multi-time periods.

Theorem 2. Let Pn = {n, n-, . . . , 0} ⊂ N+ denotes the unique path from n to root node 0. If Φ(.) is
strictly increasing in p0 and if:

• there is no shunt capacitances and admittances (∀n ∈ N , Bn = Gn = 0);

• for any optimal x = (p, q,f , g,v, `) ∈ sol(P?) , the linearized flow solutions (considering `n,t = 0
in (1)):

f̂n(pt)
∆
= −

∑
m:n∈Pm

pm,t, ĝn(qt)
∆
= −

∑
m:n∈Pm

qm,t ,

v̂n,t(x)
∆
= V0 + 2

∑
m∈Pn

Rmf̂m(pt) +Xmĝm(qt)

verifies: v̂n,t(x) < V n,

• for any t ∈ T , any path (n1, . . . , nl) to a leaf bus l ∈ N , and any (1 6 s 6 k 6 l), we have:

Ans,t . . . Ank−1,t
unk

> 0 with un
∆
=

(
Rn
Xn

)

and An,t
∆
=I − 2

V n

(
Rn
Xn

)(
[f̂n(P t)]

+ [ĝn(Q
t
)]+
)

then the SOCP relaxation (P?) given above is exact.

It has been verified in [11] that the conditions of Thm. 2 are verified in many standard networks. More
importantly, the conditions of Thms. 1 and 2 are sufficient conditions, but are not necessary: as shown
in the example of Sec. 6, but also in [11], in general the SOCP relaxation (P?) is exact even if conditions
of Thms. 1 and 2 do not hold.

The objective of this paper is not to improve those results of exactness, but to rely on the SOCP
relaxation of the branch flow model to design an efficient coordination procedure between the DSO and
LAs while considering the decentralized information structure. Thus, for the remaining of the paper, we
make the following assumption.

Assumption 2. For the instances considered, problem (P?) is an exact relaxation of the actual ACOPF
problem.

Assumption 2 is easy to verify a posteriori for a solution: it suffices to check that (1d) is an equality.
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3 Distribution Locational Marginal Prices

The idea of using DLMPs has been considered in the literature in the last five years [17],[23],[19]. In
addition to being mathematically funded, DLMPs provide a decentralized tool that has shown its efficiency
for more than a decade at the transmission level.

In a context of an important level of local renewable energy, DLMPs for the reactive power part
[22] can also be a valuable tool to improve the stability and power quality of the distribution grid. In
some cases, the reactive power can be adapted locally, for instance through smart inverters associated to
renewable sources. Thus, in this paper, we will consider DLMPs for both the active power pn and the
reactive power qn for node n, as defined in Sec. 1.

Besides, advances in conic optimization to solve the OPF problem (SOCP (P?) and SDP [32] re-
laxations) make the idea of relying on DLMPs for decentralized coordination more relevant. Indeed, by
solving the SOCP problem (P?) or (P0(xA)) representing an instance of OPF with standard interior
point methods [10, Ch. 11], the active (resp. reactive) DLMPs are directly obtained by the system opera-
tor as the dual solutions (λp

n)n∈N (resp. (λq
n)n∈N ), and can be transmitted to the LAs as price incentives.

This is the basis of the decentralized coordination methods proposed in Sec. 4.
The DLMPs (λp

n,λ
q
n) emerging as Lagrangian multipliers of the SOCP formulation (1) can be decom-

posed and interpreted. Prop. 1 completes [19, Prop. 3.2] where the author studies different interpretations
of DLMPs in the SOCP formulation (1) of the ACOPF, as well as in two other ACOPF formulations.

Proposition 1. The DLMPs (λp
n,λ

q
n) at node n can be expressed as a linear combination of the DLMPs

of the ancestor node n-, in addition to some dual quantities related to the line capacity constraints (1e),(1f)
and the voltage definition constraints (1a),(1d):

λp
n = λp

n-
− 2fnγn − 2fnη

+
n − 2(fn −Rn`n)η−

n + 2βnRn,

λq
n = λq

n-
− 2gnγn − 2gnη

+
n − 2(gn −Xn`n)η−

n + 2βnXn.

Proof. The Lagrangian function associated to problem (P0(xA)) is:

L =φ0(x) +
∑
t∈T

∑
n∈N

[
η+
n,t ×

(
f2
n,t + g2

n,t − S2
n

)
+ η−n,t ×

((
fn,t −Rnln,t

)2
+
(
gn,t −Xnln,t

)2 − S2
n

)
+βn,t ×

(
vn,t − 2(Rnfn,t +Xngn,t) + ln,t(R

2
n +X2

n)− vn-,t

)
+ γn,t ×

(
f2
n,t + g2

n,t − vn,tln,t
)

+λn,t ×
(
fn,t −

∑
m∈δ+n

(
fm,t − lm,tRm,t

)
+ pn,t +Gnvn,t

)
+µn,t ×

(
gn,t −

∑
m∈δ+n

(
gm,t − lm,tXm

)
+ qn,t −Bnvn,t

)
+σn,t × (V n − vn,t) + σn,t × (vn,t − V n) .

(4)

We can then obtain the equalities of Prop. 1 from the KKT conditions of optimality, as
∂L
∂fn

= 0 and

∂L
∂gn

= 0.

Prop. 1 does not provide a closed form of the DLMPs, as we cannot obtain an explicit expression
of Lagrangian multipliers γn,βn. The interpretation of multipliers γn,βn is not straightforward, as
noticed in [19], where the author states that the DLMPs λp

n can be expressed as nonlinear functions of
λp
n- ,λ

q
n,λ

q
n- ,η

+
n and η−n , although these functions are implicit. However, Prop. 1 shows that the DLMPs

at a given node are linearly linked to the DLMPs at the parent’s node. This is further highlighted in
Prop. 2 below where it is shown that, if reactances are negligible, then the DLMPs at one node are equal
to the DLMPs at the ancestor node.
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Proposition 2. In the limit of negligible reactances and shunt reactances at node n, i.e

Rn, Xn, Gn, Bn −→ 0

and if the line (n, n-) is not saturated at time t (i.e. inequalities (1e),(1f) are strict), then the DLMPs at
n at t and at the parent node n- are equal:

|λpn,t − λ
p
n-,t| −→ 0 , |λqn,t − λ

q
n-,t| −→ 0 . (5)

Proof. As capacity constraints are not binding, we get from the complementarity conditions that η+
n,t =

η−n,t = 0. From the KKT condition obtained by taking the derivative of the Lagrangian w.r.t `n,t and as
Rn = Xn = Gn = Bn = 0, we get:

0 = γn,tvn,t .

As vn,t > 0, we necessarily have γn,t = 0. Thus, simplifying the equalities stated in Prop. 1 gives exactly
(5).

Prop. 2 has further consequences: if the conditions hold for all nodes n ∈ N , then all DLMPs are
equal to the DLMPs at the root node λp

0 ,λ
q
0. In particular, for each n ∈ N ,λp

n = ∇pp0φinj(p
p
0 ) i.e. the

DLMPs are all equal to the root node marginal production cost, which is what we expect to obtain. If
resistances are nonzero and capacity constraints are saturated, the DLMPs will deviate from this value
to account for the costs of losses and congestion effects.

Let us reformulate problem (P?) formally to consider the decomposition between the DSO and LAs,
as:

min
x

Φ(x) (6a)

A0x0 +BxA = b (λ) (6b)

x0 ∈ X0 (6c)

xA ∈ XA, (6d)

where x
∆
= (x0,xA) and where

• xA
∆
= (xa)a∈A denotes the LAs (consumption) variables with feasibility set XA with

xa
∆
= (pn,t, qn,t)n∈Na,t∈T

related to her affiliated nodes (and the corresponding consumption/production variables);

• x0 denotes the DSO (operation) variables with feasibility set X0, that is:

x0
∆
= (p0, q0,v, `,f , g) .

Constraint (6b) refers to the coupling constraints between LAs and DSO variables (1b). It is assumed

that matrix B is block diagonal B = diag(Ba)a∈A, where Ba ∈ Mka,na(R). We denote by k
∆
=
∑

a ka
the dimension of the LAs variables, thus A0 ∈ Mk,n0(R). From now on, the notation λ ∈ Rk is used
to denote the complete vector of Lagrangian multipliers associated to (6b), corresponding to (λp,λq) in
Problem (P?).

From (6), we derive:

minx0∈X0,xA∈XA Φ(x)
s.t. A0x0 +BxA = b

= min
xA∈XA

φA(xA) +
minx0∈X0 φ0(x0)
s.t. A0x0 +BxA = b

= min
xA∈XA

φA(xA) + F (xA) (7)
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where
F (xA)

∆
= min
x0∈X0

max
λ

φ0(x0) + λ>(A0x0 +BxA − b) . (8)

The function F is not necessarily differentiable. However, it is subdifferentiable as it is convex. From
there we can derive the following result on the DLMPs:

Proposition 3. For each node n ∈ N , the DLMPs λp
n,λ

q
n correspond to subgradients of the DSO’s

optimal cost with respect to pn (resp qn), that is

∀t ∈ T , λpn,t ∈ ∂pn,tF (xA) , λqn,t ∈ ∂qn,tF (xA)

Proof. We apply the sensitivity inequality [10, sec. 5.57] to the problem defined by F (xA), parameterized
by xA. This inequality corresponds to the definition of the subgradients of F (.).

Because φ0 is not strictly convex w.r.t. x0, in general we cannot guarantee the uniqueness of the
DLMPS.

From Prop. 3, one could wonder if DLMPs are to be always positive. Indeed, a slight increase in active
or reactive consumption at node n would, in general, trigger the same increase (in addition to network
losses) in production at the root node 0 and, under the assumption that production costs φ0 is strictly
increasing in pp0,t, then ∇pp0,tφ0 would be positive. However, this is not always the case: the numerical

example given in Sec. 6 shows a case where a DLMP is slightly negative.

4 Decentralized Coordination Methods

The idea behind the proposed coordination algorithm is to consider the OPF problem in a decentralized
framework, where different parts of the set of decision variables are managed by different agents:

• each LA a ∈ A decides of local consumption variables xa related to her affiliated nodes (and the
corresponding consumption/production variables);

• the DSO is responsible of the operation of the network, that is, of the variables x0.

Besides, a decentralized coordination mechanism is also relevant to address the partial information held
by each agent. Typically, the network characteristics (topology, capacities, etc.) related to constraints
(1) are considered as confidential information by the DSO and shall not be revealed to other actors of the
system. On the other hand, consumption and production constraints can constitute private information
for electric consumers and, thus, should not be revealed by an aggregator to other actors or network
operator.

The essential step in the proposed DLMP-based procedure is to rely on a decomposition method
that enables to obtain x∗A and DLMPs λ∗ while respecting the decentralized structure of decisions and
information: the DSO does not have access to XA and is responsible of variables x0, while each LA a
does not have access to X0 or Xã for ã 6= a, and is responsible of variables xa. In the remaining of this
Sec. 4, we review different decomposition methods to be used in this framework.

To ensure the convergence and validity of the different methods, we consider the following additional
standard assumption of strong duality:

Assumption 3. A constraint qualification (e.g. Slater’s condition) holds for (6), such that strong duality
holds [10, ch. 5]:

min
x∈X

max
λ∈Rk

L(x,λ) = max
λ∈Rk

min
x∈X
L(x,λ) . (9)
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4.1 Dual Decomposition

Considering x0 and xA satisfying (6c) and (6d), the Lagrangian function associated to (6) is defined as:

L(x0,xA,λ)
∆
= Φ(x) + λ>(A0x0 +BxA − b) , (10)

which is a basic ingredient of the following method.
The dual decomposition method [33] relies on the consideration of the subproblems:

min
xa∈Xa

φa(xa) +λ>aBaxa, (P ′
a(λa))

min
x∈X0

φ0(x0) + λ>A0x0. (P ′
0(λ))

A dual ascent enables to optimize (6) in a distributed way, by considering the following Algo. 1:

Algo. 1 Decomposition through Dual Ascent

Require: λ(0), stopping criterion , steps (αk)k
1: k ← 0
2: while stopping criterion not true do
3: for each LA a ∈ A do
4: [LA a] receive λ

(k)
a from DSO

5: [LA a] x
(k+1)
a ∈ sol(P ′

a(λa))
6: end for
7: [DSO] x

(k+1)
0 ∈ sol(P ′

0(λ))

8: [DSO] λ(k+1) = λ(k) + αk(A0x
(k+1)
0 +Bx

(k+1)
A − b)

9: k ← k + 1
10: end while

If the sequence (αk)k is chosen such that
∑

k αk = +∞ while
∑

k α
2
k <∞, and Φ satisfies some strict

convexity assumption, Algo. 1 converges to a solution of (6) [33], [34, Ch. 6].

4.2 Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers (ADMM) was originally introduced in [35] and gained
in popularity due to applications to machine learning and the seminal survey [36].

As for the Auxiliary Problem Principle, the method relies on the augmented Lagrangian function:

Lρ(x0,xA,λ)
∆
= Φ(x) + λ>(A0x0 +BxA − b) +

ρ

2
‖A0x0 +BxA − b‖22 , (11)

where ρ > 0 is a parameter that is used as a step size in the method:
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Algo. 2 Decentralized Optimization through ADMM

Require: λ(0), stopping criterion , steps (αk)k
1: k ← 0
2: while stopping criterion not true do
3: for each LA a ∈ A do
4: [LA a] receive λ

(k)
a and A0x

(k)
0 from DSO

5: [LA a] x
(k+1)
a ∈ argmin

xa∈Xa

φa(xa) +λ
(k)>
a Baxa+ ρ

2

∥∥∥A0x
(k)
0 +BxA − b

∥∥∥2

2

6: end for

7: [DSO] x
(k+1)
0 ∈ argmin

x0∈X0

φ0(x0) +λ(k)>A0x0+ ρ
2

∥∥∥A0x0 +Bx
(k+1)
A − b

∥∥∥2

2

8: [DSO] λ(k+1) = λ(k) + ρ(A0x
(k+1)
0 +Bx

(k+1)
A − b)

9: k ← k + 1
10: end while

In ADMM, in addition to communicate the DLMPs λ(k), the DSO also has to send the current profiles

A0x
(k)
0 to each LA at each iteration k. Getting back to (1b), this means that the DSO communicates a

“base” profile (p̃
(k)
n,t , q̃

(k)
n,t )n,t given by p̃

(k)
n,t

∆
= −f (k)

n,t +
∑

m:m−=n

(
f

(k)
m,t−`

(k)
m,tRm,t

)
−Gnv(k)

n,t , and similarly for q̃
(k)
n,t .

The convergence of ADMM is ensured by the following result:

Theorem 3. [36, Sec.3.2.1] Under Assumption 3 and convexity of φ0 and φA, we have the following
convergence result:

• feasibility convergence:
∥∥∥A0x

(k)
0 +Bx

(k)
A − b

∥∥∥ −→
k→∞

0 ,

• objective convergence: φ0(x
(k)
0 ) + φA(x

(k)
A ) −→

k→∞
Φ∗ where Φ∗ is the optimal value of (6),

• dual (DLMPs) convergence: λ(k) −→
k→∞

λ∗, where λ∗ are optimal Lagrangian multipliers of (6).

4.3 Primal-Dual Gauss-Seidel (PDGS) Iterations

In Algo. 3 below, we propose a new method, referred to as PDGS, which relies on a Lagrangian relaxation
of the coupling constraint (6b) as the dual decomposition methods above. The main difference is that
we consider the original instances of (P0(xA)) instead of relaxed problem. For that, we rely on the
resolution of the dual problem of OPF problem (P0(xA)) to compute the DLMPs λ, while computing
the associated LAs decisions xA afterwards. Using the Lagrangian function L defined in (10) , problem

(6) can be written, with X ∆
= X0 ×XA:

inf
x∈X

sup
λ∈Rk

L(x,λ), (12)

and the dual problem:
sup
λ∈Rk

inf
x∈X
L(x,λ) = sup

λ∈Rk

ψ0(λ,xA) , (13)

where we consider the (partial) dual function ψ0 defined as:

ψ0(λ,xA)
∆
= min
x0∈X0

{
Φ(x0,xA) + λ>(A0x0 +BxA − b)

}
= min
x0∈X0

{
φ0(x0) + λ>A0x0

}
+ φA(xA) + λ>(BxA − b) .
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Because X0 is a compact subset, ψ0 is well defined. Using the notation of (6), the problem (P0(xA)) can
be reformulated as:

min
x0∈X0

φ0(x0)

s.t. A0x0 = b−BxA (λ)

where λ is the Lagrangian multiplier associated to the equality constraint, such that ψ0 is the dual
function of problem (P0(xA)) (translated by φA(xA)). Moreover, we have:

Proposition 4. ψ0 is concave in λ and convex in xA.

Proof. The function ψ0 is the sum of the convex function xA 7→ φA(xA) and of an affine function of xA,
thus it is convex in xA. As a minimum of concave functions of λ (because affine), it is concave in λ.

The dual problem (13) is always feasible because X0 is nonempty and λ ∈ Rk. However, it is not
necessarily bounded: indeed, because strong duality holds, we know that the dual problem is unbounded
iff the primal problem (P0(xA)) is infeasible [10, Sec.5.2]. The Algo. 3 presented below relies on dual
solutions: to ensure its convergence, we rely on truncated dual problems, resulting in bounded dual
solutions.

Proposition 5. The modified problem PK
0 (xa) with additional variable u+,u−:

min
x0∈X0, u+,u−>0

φ0(x0) +K(u+ − u−)

s.t. A0x0 = b−BxA + u+ − u− (λ)
(PK

0 (xa))

admits the same dual problem as (P0(xA)) with the additional constraint K1k 6 λ 6 K1k.

Proof. This comes from the definition of the dual problem. Details are omitted.

Algo. 3 Decentralized Optimization through PDGS

Require: λ(0), stopping criterion
1: k ← 0
2: while stopping criterion not true do
3: for each LA a ∈ A do

4: [LA a] xA ∈ argmin
xa∈Xa

φa(xa)+ λ
(k)
a

>
Baxa = argmin

xa∈Xa

ψ0(λ(k),xa)

5: update solution x
(k+1)
a

∆
= 1

k+1(kx
(k)
a + xa)

6: end for
7: if P0(x

(k+1)
a ) is feasible then

8: [DSO] obtain dual solution λ arg max
λ∈Rk

ψ0(λ,x
(k+1)
A ) of problem P0(x

(k+1)
a )

9: else
10: [DSO] obtain dual solution: λ ∈ arg max

K1k6λ6K1k

ψ0(λ,x
(k+1)
A ) of modified problem PK

0 (x
(k+1)
a )

11: end if
12: [DSO] update dual solution (DLMPs) λ(k+1) ∆

= 1
k+1(kλ(k) + λ)

13: k ← k + 1
14: end while

The idea behind Algo. 3 is that, as stated above, the primal problem (P0(xA)) is not always feasible
(depending on the value of xA), but the dual problem is always feasible (although it can be unbounded)
and we can always get a dual solution λ. We rely on Prop. 5 and solve the modified problem to ensure
this dual solution remains bounded. We have the following formal result:
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Proposition 6. In case of convergence, Algo. 3 provides a DLMP-based decentralized coordination method
which enables to optimize DERs while satisfying network constraints, giving an optimal solution of (P?).

Proof. The algorithm is decentralized as φA(xA) =
∑

a∈A φa(xa) is separable and B = diag(Ba)a∈A is
block-diagonal, so that Line 4 can be executed in a decentralized manner by each LA a ∈ A, while the
update of λ (Line 7 to Line 11) is executed independently by the DSO.

Let x∗A,λ
∗ be a fixed point of Algo. 3. Then (x∗A,λ

∗) satisfy the KKT conditions of (Pa). Consid-
ering a primal solution x∗0 for (P0(xA)) associated to λ∗, then (x∗0,λ

∗) satisfies the KKT conditions of
(P0(xA)). The union of the two sets of conditions gives exactly the KKT conditions of problem (P?),
which shows that (x∗0,x

∗
A,λ

∗) ∈ sol(P?).

There are two main advantages of Algo. 3:

1. we consider the actual problems on both sides: LAs simply face the price incentives given by the
DLMPs λ in their local optimization problem, while the DSO computes the network optimal power
flow solution given the consumptions profiles on each node;

2. the method ensures primal feasibility : at the end of each iteration and as soon as (P0(xA)) is

feasible, the DSO computes a feasible solution x0 of P0(x
(k+1)
a ) satisfying Ax0 +Bx

(k+1)
A = b. This

is the main difference with Lagrangian methods such as ADMM where primal feasibility is only
asymptotic (Thm. 3). In practice, this is of main importance in our framework as the DSO needs a
solution that is exactly feasible.

To help understand the convergence conditions of Algo. 3, it is relevant to consider a zero-sum game
[37] interpretation:

Proposition 7. Consider the zero-sum game on ψ0 where the first player minimizes ψ0 on xA ∈ XA,

while the second player maximizes ψ0 on λ ∈ RkK
∆
= {λ ∈ Rk | ∀m, −K 6 λm 6 K}, for K > 0

large enough. Let (x∗A,λ
∗) denote a saddle (equilibrium) point of this game. Then, there exists a primal

solution x∗0 of P0(x∗a), and (x∗0,x
∗
A) defines a solution to central problem (P?).

Proof. Because of Prop. 4, we have convex-concave saddle function on convex and compact sets, thus the
game has a value [37]. Then, the dual problem maxλ∈Rk ψ0(λ,x∗A) is bounded, and has a solution λ∗.
Now suppose that we have chosen K > 0 such that λ∗ ∈ RK . In that case, λ∗ is a dual solution of both
P0(x∗a) and PK

0 (x∗a). We know that there is a solution x∗0 to the primal problem P0(x∗a), associated to
λ∗, such that A0x

∗
0 +BAx

∗
A − b = 0. We have

Φ(x∗0,x
∗
A) + 0 = L(x∗0,x

∗
A,λ

∗)

= max
λ∈Rk

K

min
xA∈XA

ψ0(λ,xA)

= max
λ∈Rk

K

min
x0∈X0,xA∈XA

L(x0,xA,λ) (14)

= min
x0∈X0,xA∈XA

max
λ∈Rk

K

L(x0,xA,λ)

= min
x0∈X0,xA∈XA
A0x∗0+BAx

∗
A=b

Φ(x)

where (14) follows from Assumption 3.

The interpretation based on a zero-sum game goes further, as Algo. 3 actually implements the so-called
best response dynamics (BRD). Thus, we are able to show that the method converges, as given in Thm. 4
below.
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Theorem 4. For K > 0 large enough, and under Assumptions. 1 and 3, the sequences (λ(k))k and (x
(k)
A )k

generated by Algo. 3 converge respectively to a dual and a (partial) primal solutions of central problem
(P?).

Proof. Because of Prop. 4, ψ0 is a convex-concave saddle function on convex and compact strategy sets X0

and RkK . Thus, we can apply the convergence of best-response in discrete vanishing stepsizes [37, Prop.7]
which ensures that the sequences converge to an equilibrium point. We can conclude with Prop. 7.

In Sec. 6, we give a numerical example of the convergence of Algo. 3 and compare it to ADMM. One
can observe that, in the example considered here, the convergence of PDGS is quite slow.

5 Decentralized Coordination Mechanism

The decentralized coordination mechanism that we propose in this paper is the following:

Procedure 4 DLMP-based Coordination Procedure
1: computation step: an optimization decomposition method is run to coordinate LAs and the DSO,

during which each LA a ∈ A sends a sequence of profiles (x
(k)
a )Kk=1 until convergence to decisions x∗a,

associated to Lagrangian multipliers (DLMPs) λ∗ for the DSO, corresponding to an optimal primal-
dual solution (x∗0,x

∗
A,λ

∗) of (6). In particular, each aggregator agrees on realizing the announced
profile x∗a;

2: realization step: each LA a realizes the profile x̂a, which can be measured by the DSO.
3: penalization step: if x̂a 6= x∗a for at least one a ∈ A, then the DSO recomputes DLMPs as the dual

solution λ̂ of problem P0(x̂A), and charges each agent a with payments Pa
∆
= (λ̂ · x̂a) and penalize

cheating LAs with a tax τpen.

5.1 Mechanism Design Discussion

Because we rely on a decentralized decomposition method, the exchange of information is limited: in
particular, aggregators do not have to send all their information (En,xn,xn)n∈Na as considered in some
mechanisms as in [29]. Yet, Procedure 4 describes a formal mechanism, with each agent (aggregator)

announcing the sequence (x
(k)
a )Kk=1, then realizing x̂a and being charged Pa

∆
= λ̂ · x̂a.

As (x∗0,x
∗
A,λ

∗) constitutes an optimal solution of (6), it is optimal for each LA a to realize the profile
x∗a under the incentives λ∗.

However, aggregators are still required to communicate the sequence of consumption profiles (x
(k)
a )Kk=1.

From the point of view of mechanism design [38, Part II], one can think that aggregators may be tempted
to send profiles x̃a that do not comply with the update rule of the chosen decomposition algorithm, in
order to manipulate the DLMPs λ∗ computed in step 2. With LA a being truthful, its final “agreed”
profile x∗a should always satisfy (up to the convergence error):

xa ∈ argmin
xa∈Xa

φa(xa) + λ∗aBaxa

with (λ∗,x∗0) s.t. x∗0 ∈ argmin
x0∈X0

φ0(x0) + λ∗Ax0.

Because the operator is able to verify (step 3) if the realized profile x̂a corresponds to the agreed
profile x̃a, the operator can prevent deviations of aggregators on step 3 by imposing a large tax τpen on
cheating aggregators.
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5.2 A DLMP-based coordination Procedure is not Incentive-Compatible

Preventing the LAs to deviate in step 2 is not sufficient to ensure the truthfulness of the mechanism:
a cheating aggregator could also respond untruthfully during the computation step with a sequence of

profiles (x̃
(k)
a )Kk=1 with x̃

(K)
a

∆
= x̃a. More precisely, if an LA want to cheat, it can respond to each iteration

DLMPs λ̃(k) by acting with a different cost function φ̃a 6= φa and/or feasible set X̃a 6= Xa (and such that
X̃a ⊂ Xa in order to converge to a feasible profile for the LA, that can be realized in step 2).

In that way, the algorithm would still converge to λ̃, x̃0 satisfying

x̃0 ∈ argmin
x0∈X0

φ0(x0) + λ̃Ax0.

If we assume that this cheating aggregator would not deviate from x̃a in the realization step (because
the tax τpen is large enough to discourage her), then the aggregator would benefit from cheating if
φa(x̃a) + λ̃aBax̃a < φa(x

∗
a) +λ∗aBax

∗
a. The following counter-example shows an instance where this strict

inequality holds, proving that, in general, the DLMP-based mechanism is not incentive compatible.

Ex. 1. Let us consider the toy example with only one node (one aggregator) linked to the root node 0
so that N = {0, 1}, and two time periods T = {0, 1}. Parameters and topology are given in Fig. 2. The
operator has an energy cost of

φ0(p0) = (10|p01|+ 10p2
01) + (3|p02|+ 2p2

01),

while the LA has a preferred profile p]1
∆
= (1.5, 1.5) defining the cost

φ1(p1)
∆
= ω

∥∥∥p1 − p]1
∥∥∥2

2
where ω

∆
= 10.

We assume that the LA has an actual upper bound on the admissible power on time period t = 1 given by
P 11 = 1.5. If the LA announces its true upper bound of 1.5, she will end up with a utility φa = −33.57

and a total cost of φa +Pa = −15, 13. When cheating and announcing a lower upper bound P̃ = 1.0, her
cost will be φ̃a + P̃a = −32.49 and total cost of −15.47, lower than the total cost when being truthfully.
The two solutions are illustrated on Fig. 3 below.

0

G0 = 0
B0 = 0
V0 = 1.0 (fix)

1

R
,X

=
0
.0

0
1
,0
.1

2

S
=

5

P 1,P 1 = [0.3, 0.2], [1.5, 2.0]

Q
1
,Q1 = [−0.5,−0.5], [1, 1]

V 1, V 1 = 0.7, 1.3
G1 = 0 , B1 = 0.0011
E1 = 1 , η1 = 0.3

Figure 2: A toy example where the aggregator benefits from cheating
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Figure 3: Solution with Announced Power Upper bound : actual and cheated

5.3 Comparison with VCG mechanism

A standard mechanism that achieves several desirable properties is the so-called Vickrey-Clarkes-Groves
(VCG) mechanism [39, Sec. 10.6].

The framework considered in this paper is slightly different from the standard framework considered
in mechanism design, because we have an additional entity, the DSO, that is not considered as an agent in
the mechanism, but whose cost φ0(x0) has to be considered in the objective. Indeed, instead of minimizing
the social cost

∑
a∈A φa(xa), we minimize Φ(x0,xA) = φ0(x0)+

∑
a∈A φa(xa). Because we just added the

term φ0(x0) to the sum of agents’ cost functions, the social choice function considered here is in the class

of affine maximizers [39, Def. 10.5.4]. Let us denote by IA
∆
= (φa,Xa)a∈A the information transmitted

by agents to the DSO. The VCG mechanism would compute:

x(IA)
∆
= (x∗0,x

∗
A) ∈ arg min{φ0(x0) +

∑
a∈A

φa(xa) | (1) & ∀a,xa ∈ Xa} (15)

∀a ∈ A,Pa
∆
= −τ ca(I−a) +

[
φ0

(
x0(IA)

)
+
∑
a′ 6=a

φa′
(
x(IA)

)]
, (16)

where Pa is the payment made by a to the operator, I−a
∆
= (φa′ ,Xa′)a′ 6=a and τ ca(I−a) refers to the so-called

Clarke tax:

τ ca(I−a)
∆
= φ0

(
x0(I−a)

)
+
∑
a′ 6=a

φa′
(
xa′(I−a)

)
(17)

where
(
x0(I−a),x−a(I−a)

)
∈ arg min

x0,x−a

φ0(x0) +
∑
a′ 6=a

φa′(xa′). (18)

In our framework, the solutions
(
x0(I−a),x−a(I−a)

)
solved the OPF problem without considering the

loads of LA a, that is, having xa = 0, but conserving the same network structure, as the network
variables are controlled by the DSO. In the toy example of Fig. 2 above, the VCG payment of the LA 1 is
P1 = φ0(x∗0), because there is only one LA in the network, and the DSO costs would be zero without it.

The standard VCG mechanism is not decentralized: a priori, each agent a has to provide its complete

information Ia
∆
= (φa,Xa) to the DSO. One can wonder if it is possible to reduce the amount of information

provided, while keeping the structure of the VCG mechanism: indeed, using a decomposition algorithm,
each agent a would only have to provide:

• the profile x∗a (more precisely a sequence of profile responses (x
∗(s)
a )s for an iterative algorithm as

in Sec. 4, but the ultimate iteration, on which the algorithm converges, is the most important)
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• the values φa
(
x(IA)

)
and φa

(
x(IA\{a′})

)
for each a′ 6= a, to compute payment πa′ for each a′).

Let us refer to this modified mechanism as Decentralized-VCG (DVCG). As the standard VCG, DVCG
provides a mechanism that is efficient (in the sense that it provides an optimal solution of problem (P?)),
and incentive-compatible:

Proposition 8. Under the VCG mechanism, responding optimally to the DSO and announcing the true
profile x∗a and true values φa

(
x(IA)

)
, φa
(
x(IA\{a′})

)
is a dominant strategy for each aggregator a.

Proof. As the cost values φa
(
x(IA)

)
, φa
(
x(IA\{a′})

)
provided by a do not intervene in the payment Pa, a

is indifferent to the values it provides, and has no interest in providing false values. Now imagine that a
would lie during the decomposition algorithm, such that the final profiles obtained after convergence are
x̂ 6= x∗. Then the final cost of a would be φa(x̂a) + Pa = Φ(x̂)− τ ca(I−a) > Φ(x∗)− τ ca(I−a). Thus, a is
better off announcing the truth, making the decomposition algorithm converging to the optimal solution
x∗.

However, DVCG (and furthermore VCG) would be impractical to implement in practice. A first
problem is that, even if each agent is not impacted by the payments made by other agents, it may not be
indifferent to it: in practical cases, if we consider several aggregators that are competing, each of them may
have interest to provide false information to make payments of competitors larger. A second disadvantage
is that, to compute Clarke taxes (17), the operator will have to solve |A| additional decentralized problems.

6 Numerical Example

In this example, we consider the 15 buses network proposed by Papavasiliou [19], but with flexible active

and reactive loads instead of fixed ones, and we consider a time set T ∆
= {0, 1}, of 2 time periods. The

network structure can be observed on Fig. 4.
For each bus n, the parameters Rn, Xn, Sn, Bn are those of [19], given in Tab. 1, while parameters

(P n,P n, En,Qn
,Qn, τ

c
n)n are generated as follows. For each t ∈ T , and with p̂cn, q̂

c
n denoting the fixed

active and reactive load values considered in [19]:

• Pn,t is chosen randomly as Pn,t ∼ U([0, p̂cn]), where U(I) denotes the uniform distribution on I;

• Pn,t is chosen randomly as Pn,t ∼ U([p̂cn, 2p̂
c
n]);

• Q
n,t
, Qn,t are chosen similarly considering q̂cn;

• En is chosen as En ∼ U([
∑

t Pn,t,
∑

t Pn,t]);

• τ c
n is fixed as τ c

n
∆
= q̂cn/p̂

c
n.

In this example, we consider that LAs are indifferent between consumption profiles as long as they are
feasible, that is, φa = 0 for each a ∈ A. Following [19], we consider that only the bus 11 has a renewable

production, with P
p
11,t ∼ U([0, 0.6]) and ρp ∆

= 0 (the renewable production is fully active). The bounds

(V n, V n) are taken to 0.81 and 1.21 for each n ∈ N , while V0 = 1.0.
We consider the objective Φ(x) = φ0(x0) =

∑
t∈T ct(p

p
0t), with cost functions chosen as follows: time

period 0 has an expensive price given by c0 : p 7→ p + p2, while time period 1 has a cheaper price given
by c1 : p 7→ p.
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n Rn Xn Sn E[pn,t] E[qn,t] Bn·103

0 0 0 0 0 0 0
1 0.001 0.12 2 0.7936 0.1855 1.1
2 0.0883 0.1262 0.256 0 0 2.8
3 0.1384 0.1978 0.256 0.0201 0.0084 2.4
4 0.0191 0.0273 0.256 0.0173 0.0043 0.4
5 0.0175 0.0251 0.256 0.0291 0.0073 0.8
6 0.0482 0.0689 0.256 0.0219 0.0055 0.6
7 0.0523 0.0747 0.256 -0.1969 0.000 0.6
8 0.0407 0.0582 0.256 0.0235 0.0059 1.2
9 0.01 0.0143 0.256 0.0229 0.0142 0.4
10 0.0241 0.0345 0.256 0.0217 0.0065 0.4
11 0.0103 0.0148 0.256 0.0132 0.0033 0.1
12 0.001 0.12 1 0.6219 0.1291 0.1
13 0.1559 0.1119 0.204 0.0014 0.0008 0.2
14 0.0953 0.0684 0.204 0.0224 0.0083 0.1

Table 1: Parameters for the 15 buses network [19]

The SOCP problem (P?) is solved with the CvxOpt Python library [40] in 0.53s on a laptop with a
processor of 2.6GHz. The solutions obtained are detailed in Tab. 2, while Fig. 4 shows the active flows
directions and the saturated lines.
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Figure 4: Directions of the active flows f at the optimal solution. Saturated lines are dashed.

The optimal production for node 11 is pp
11,0 = 0.185 and pp

11,1 = 0.194, while the optimal costs obtained
are c0(pp

0,0) = 0.873 and c1(pp
0,1) = 1.299. Several comments are to be made.

First, one can observe that, even if the example does not satisfy the theoretical assumptions of Thm. 1
or Thm. 2, the SOCP relaxation is exact and gives the optimal solution of the original OPF problem.

Second, the solutions show that the active (and reactive) DLMPs obtained for each time period are
closed to the DLMPs at the root node (λp

0 ,λ
q
0), except in two cases:

• for the branch composed of nodes 8, 7, 9, 10, 11, the active DLMPS are close to 0.0 on all time
periods. This is due to the fact that the renewable production of node 11 at cost 0 and the negative load
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n λpn,0 λqn,0 pcn,0 qn,0 fn,0 gn,0 `n,0 vn,0

0 2.12 0.0 -0.56 -0.249 - - - 1
1 2.122 0.008 0.623 0.146 -0.427 -0.188 0.229 0.951
2 2.049 0.029 0.0 0.0 0.199 -0.038 0.042 0.975
3 1.937 0.055 0.028 0.012 0.205 -0.032 0.042 1.017
4 1.939 0.055 0.005 0.001 -0.019 -0.003 0.0 1.016
5 1.94 0.055 0.001 0.0 -0.014 -0.002 0.0 1.016
6 1.942 0.055 0.013 0.003 -0.013 -0.003 0.0 1.014
8 0.003 0.177 0.023 0.006 0.256 -0.016 0.063 1.036
7 0.0 0.177 -0.131 0.0 0.131 0.001 0.016 1.049
9 0.003 0.177 0.002 0.001 0.148 -0.011 0.021 1.038
10 0.001 0.177 0.014 0.004 0.151 -0.009 0.022 1.045
11 0.0 0.177 0.02 0.005 0.165 -0.005 0.026 1.048
12 2.12 0.0 0.107 0.022 -0.132 -0.032 0.019 0.992
13 2.137 0.007 0.003 0.002 -0.025 -0.009 0.001 0.982
14 2.146 0.01 0.022 0.008 -0.022 -0.008 0.001 0.977

n λpn,1 λqn,1 pcn,1 qn,1 fn,1 gn,1 `n,1 vn,1

0 1.0 0.0 -1.299 -0.549 - - - 1
1 1.002 0.004 1.05 0.245 -0.924 -0.321 1.057 0.906
2 0.979 0.021 0.0 0.0 0.127 -0.074 0.024 0.909
3 0.942 0.046 0.037 0.015 0.131 -0.072 0.024 0.916
4 0.945 0.047 0.027 0.007 -0.083 -0.019 0.008 0.911
5 0.947 0.048 0.031 0.008 -0.057 -0.013 0.004 0.909
6 0.95 0.048 0.026 0.006 -0.026 -0.006 0.001 0.905
8 0.004 0.176 0.006 0.001 0.254 -0.035 0.07 0.932
7 -0.001 0.176 -0.143 0.0 0.143 0.001 0.022 0.947
9 0.003 0.176 0.036 0.022 0.118 -0.033 0.016 0.933
10 0.001 0.176 0.015 0.004 0.154 -0.011 0.025 0.94
11 0.0 0.176 0.026 0.006 0.169 -0.006 0.03 0.943
12 2.008 0.272 0.342 0.071 -0.374 -0.083 0.15 0.977
13 2.031 0.281 0.002 0.001 -0.032 -0.012 0.001 0.965
14 2.044 0.286 0.03 0.011 -0.03 -0.011 0.001 0.957

Table 2: Results of the OPF for the 15-bus network for time periods t=0 (above) and t=1 (below).

of node 7, which together fully compensate the demand on this branch. The energy left is exported to
the remaining nodes of the network up to the saturation of the line (3, 8). This saturation creates an
important difference of the DLMPs between one part of the network and the other. The DLMPs here
give incentives for the nodes to either decrease production or increase consumption as much as possible,
in order to release the saturation of line (3, 8).

• On the contrary, the active DLMPs on the branch composed of nodes (12, 13, 14) on time period
t = 1 are twice as large as the other nodes. Again, this is explained by the saturation of line (0, 12).
Because of the cheaper price on time period 1, LAs are encouraged to move the flexible demand onto
this period, which results in the congestion of line (0, 12). Here, the DLMPs counterbalance this price
difference and give incentives to decrease consumption on t = 1 for nodes 12, 13, 14 in order to stay within
the line capacity.

Third, the DLMP for node 7 and t = 1 is strictly negative: at this time period, the (negative)
consumption for this node is at its upper bound p7,1 = P 7,1 = −0.143. The negative DLMP shows that
the system will be better off if less power was injected by node 7. Interestingly, this case shows that, in
some specific cases, DLMPs can be negative, even if we consider an increasing cost function φ0.
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Agg. Nodes DLMP payment VCG payment

1 [1, 2, 3] 2.464 2.04

2 [4, 5, 6, 12, 13] 0.693 0.675

3 [8, 7, 14] 0.077 -0.007

4 [9, 10] 0.006 0.004

5 [11] 0.002 -0.115

Table 3: Comparison of DLMP payments and VCG payments

Tab. 3 shows the difference between the DLMP payments of each aggregator a, and its VCG payments,
given in Sec. 5.3. It is interesting to observe that DLMP payments remain close to VCG payments. We
also observe on this example that the DLMP payment of each aggregator is always larger than the VCG
payment. This inequality was proved to hold systematically in [29] in a much simpler framework (without
network constraints and power upper bounds). Extending it in the framework of this paper would be an
interesting avenue.

(a) PDGS (K = 4) (b) ADMM (ρ = 5)

Figure 5: Convergence of PDGS (Algo. 3) and ADMM (Algo. 1). In spite of other advantages, PDGS is
very slow to converge after a few iterations.

In Fig. 5, we compare the convergence of PDGS (Algo. 3) and ADMM (Algo. 1). For PDGS in
this example, infeasibility of the DSO subproblem (see Algo. 3) only appears on iterations 1,2,12 and,
ultimately, 19: the DSO subproblem is always feasible afterwards. PDGS is very slow to converge:
as opposed to ADMM which needed 60 iterations (executed in 21.41 seconds in our configuration) to
converge with an error of less than 10−4 on primal feasibility (which is equal to the primal feasibility

error ρ(A0x
(k+1)
0 + Bx

(k+1)
A − b)) and objective, PDGS is still more than 10−3 away from the optimal

objective cost after 1000 iterations (executed in 364.23 seconds in our configuration). Although a parallel
implementation could save execution time (it is possible to solve all LAs’ problems in parallel, and to
solve all time periods problems in parallel in the DSO’s problem), it could be necessary to rely on ADMM
rather than on PDGS in practice, for a larger network and a larger number of time periods.

A possibility for the DSO could be to rely on the two algorithms: considering the last solutions of the
LAs for some iterations of ADMM, and then applying PDGS until reaching primal feasibility.

Improving the convergence of PDGS, for instance by adding a regularizing term in the subproblems,
could also be an avenue for further research.
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Conclusion

We proposed a coordination procedure for aggregators operating on a distribution network, which respects
the decentralized structure of decisions and information. This procedure enables to compute decentralized
decisions satisfying AC network constraints and leading to an optimal grid operation from the system
operator point of view.

Several directions of research are interesting for extending this work. One could study the tractability
and the limits of the proposed procedure for large-scale instances, considering networks with a large
number of nodes and/or a large set of time periods.

Second, an interesting but complex extension to the proposed model would be to consider a strategic
and game-theoretic framework in which aggregators are subject to the DSO incentives, but are also
price-makers on an electricity market.
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