# DLMP-based Coordination Procedure for Decentralized Demand Response under Distribution Network Constraints

Paulin Jacquot \*

August 26, 2020

#### Abstract

Load aggregators are independent private entities whose goal is to optimize energy consumption flexibilities offered by multiple residential consumers. Although aggregators optimize their decisions in a decentralized way, they are indirectly linked together if their respective consumers belong to the same distribution grid. This is an important issue for a distribution system operator (DSO), in charge of the reliability of the distribution network, it has to ensure that decentralized decisions taken do not violate the grid constraints and do not increase the global system costs. From the information point of view, the network state and characteristics are confidential to the DSO, which makes a decentralized solution even more relevant. To address this issue, we propose a decentralized coordination mechanism between the DSO and multiple aggregators that computes the optimal demand response profiles while solving the optimal power flow problem. The procedure, based on distribution locational marginal prices (DLMP), preserves the decentralized structure of information and decisions, and lead to a feasible and optimal solution for both the aggregators and the DSO. The procedure is analyzed from a mechanism design perspective, and different decentralized methods that could be used to implement this procedure are presented.

**Keywords:** Decentralized Systems, Demand Response, Mechanism Design, Load Aggregator, Distribution Locational Marginal Prices, AC Optimal Power Flow.

# Introduction

**Context.** The management of electricity consumption flexibilities, or *Demand Response* [1], offered by new usages such as electric vehicles and smart appliances, is considered as a key component of modern electricity systems. It will help to increase the share of renewable energy production, reduce carbon emissions and ensure the grid stability and resilience. In this context, aggregators are new actors of the electricity system, whose role is to *aggregate* a large number of individually negligible consumption flexibilities offered by residential or small consumers, and valuate these flexibilities on the demand response market [2] or as a service offered to the system operator. In competitive electricity markets as in Europe or in the United States, several Load Aggregators (LAs) can be present on the same distribution network, implying the need for coordination. There is a hierarchical decisions structure, as explained in [2], from the distribution system operator (DSO) in charge of the network, which interacts with the present LAs, each LA interacting at the lower level with a subset of affiliated end-consumers. This decentralized system involves multiple actors that are meant to engage in decentralized decisions. However, the decisions of LAs and of the DSO are all linked by the physical constraints of the underlying network (line capacities, voltage limits, etc): if each LA manages its flexibilities ignoring these constraints, the resulting flows could jeopardize the stability of the network or, from the mathematical point of view, be infeasible.

<sup>\*</sup>P. Jacquot is with the GERAD research center and Polytechnique Montréal, Montréal, Canada. paulin.jacquot@polytechnique.edu. This work was partially funded by Mitacs Elevation program.

In addition to the multiplicity of actors, the information asymmetry is also a key issue in the coordination: the network physical parameters (topology, line resistances and capacities, etc.) are often considered as confidential by the DSO and not revealed to third parties, while, on the other hand, LAs might have privacy considerations regarding the flexibilities provided by consumers.

The objective of the present paper is to provide a decentralized coordination mechanism for LAs, based on the computation of Distribution Locational Marginal Prices (DLMPs) obtained from a conic relaxation of the Alternative Current Optimal Power Flow (ACOPF) problem. Considering an AC model of the network enables to take into account not only capacity constraints but also voltage and angle constraints, which are limiting in practice in distribution networks, as stated above. The underlying idea of the proposed mechanism is to use DLMPs, centrally computed by the DSO, as price incentives for LAs to manage their flexibilities. Through such a procedure, the decentralized structure as well as the asymmetry and privacy of information are preserved.

**Related Works.** Recent works have shown the existence of tight conic relaxations of the ACOPF problem, with some cases of exact relaxations *exact* in particular for radial networks. The works [3, 4] consider a Semi-Definite Programming (SDP) relaxation of ACOPF and show its exactness. The works [5-7] consider different Second Order Cone Programming (SOCP) relaxations of the OPF problem and show that the SOCP relaxations can be exact under some additional assumptions. The authors in [8] showed that, in tree networks, the *branch flow* SOCP relaxation is exact whenever the SDP model [3] is exact. Recently, Zohrizadeh *et al* [9] proposed a survey on the different relaxation techniques and associated results. As SOCP is computationally simpler than SDP [10, 11], we focus in this paper on the SOCP branch flow model of [6].

In [12], the authors propose a decomposition algorithm, based on the *Cutting Plane Methods* for the decentralized coordination of several aggregators on a network. Lagrangian multipliers—associated to the aggregated power demand equality constraint of each aggregator—are used to defined coordination signals, but these prices are not "locational", and power flow constraints are not considered.

Le Cadre *et al* [13] consider the coordination between TSO and DSO, relying on the branch flow formulation and SOCP relaxation for the OPF problem. They compare different solutions obtained from a centralized optimization, a generalized game and a Stackelberg model.

The idea of using DLMPs to coordinate LAs and electric vehicles charging in a decentralized fashion appears in [14]. Scott *et al* [15] consider the optimization of distributed energy resources (DERs), under the nonconvex power flow constraints of a multiphase unbalanced network. They rely on the alternating direction method of multipliers (ADMM) to solve a distributed receding-horizon OPF and obtain DLMPs, and show results of real experiments of their method. In [16], authors consider the radial formulation of the OPF for distributed generators. Instead of relying on convex relaxations, they study numerically ADMM and dual decomposition algorithms that consider different nonconvex subproblems for branches and buses of the network.

Huang *et al* [17] propose to use a quadratic model to implement the decentralized procedure using DLMPs, to coordinate LAs of electric vehicles or heat pumps. They extend their model, considering the possibility of negative prices (subsidies) in [18]. The papers [14, 17, 18] consider a direct current (DC) power flow model, and DLMPs are the Lagrangian multipliers associated to the capacity constraint for each time period in the DSO optimization problem. Although DC power flow models are much easier to solve than ACOPF problems, a DC model does not consider all existing constraints in distribution networks such as voltage limits.

Papavasiliou [19] considers two formulations of the ACOPF in distribution networks, based on an implicit function formulation and on the SOCP relaxation [20], and derives expressions and properties of the DLMPs in each formulation. The SOCP formulation adopted in this paper, is the most interesting from a computational point of view.

Liu et al [21] consider solving the original (nonconvex) ACOPF problem for the DSO to obtain DLMPs

sent to multiple LAs to compute flexible consumption profiles satisfying consumers constraints. However, because of its nonconvexity [6], the original ACOPF problem can be very hard to solve in practice, and only a local optimum may be found. As the objective functions considered by LAs in [21] are linear, one cannot ensure, as noted in [17], that the combination of the individual LAs solutions obtained through this decentralized procedure does not necessarily correspond to the optimal solution computed by the DSO.

Lin *et al* [22] propose a coordination mechanism between transmission and distribution level, considering an AC branch flow [6] model for distribution grids. Their method relies on the exchange of information (boundary variables and lower bounds) between transmission and distribution levels.

Bai *et al* [23] propose to solve the ACOPF, considering different types of distributed energy resources (DERs) as well as feeder reconfiguration and on load tap changers, involving discrete decision variables. The authors propose to solve in a first step the problem considering the SOCP relaxation defined in [6] with the discrete variables, to determine the optimal values of these variables. In a second step, the discrete variables are fixed and a linearization of the SOCP problem around the optimal value is solved to obtain DLMPs, which are then transmitted to the DERs.

The framework considered in this paper differs from the above mentioned works in at least two points. First, the procedures proposed in the existing literature are not decentralized as, to compute the DLMPs by solving the OPF, the authors consider that the DSO has access to all the information from the DERs (capacities, state of charge for batteries, power bounds for LAs). A solution could be to impose to all the DERs to provide the necessary information to the DSO in time, or that the DSO computes an approximation of these parameters. However, another solution analyzed in this paper, is to rely on a *decentralized* iterative procedure in which each DER updates its individual decisions according to a partial information received from the DSO, and then transmit its profile back to the DSO. This solution has the advantage to converge to a feasible power flow solution, which may not necessarily be the case if the DSO simply transmits the DLMPS to DERs, as multiple individual profiles can emerge from the linear programs solved by the DERs [17].

Second, most of the works [14, 17, 21, 23] consider either DCOPF or linearizations of ACOPF. In this paper we obtain the DLMPs directly from the resolution of the branch flow SOCP relaxation of the OPF problem [6].

Main Contributions. The main contributions brought by this paper are the following:

• we present a model of the interactions of a DSO and multiple LAs subject to the distribution network constraints, highlighting the need for a coordination mechanism between those actors (Sec. 1);

• we review the existing results on the exactness of the SOCP relaxation for the OPF problem based on the branch flow model, and we consider their extensions to multi-time periods framework (Thm. 1, Thm. 2);

• we bring more insight and give additional results on the DLMPs obtained from the optimal solution of the SOCP relaxation based on the branch flow model (Prop. 2, Prop. 3). In particular, Prop. 2 shows the link between the DLMPs at one node and at the ancestor node. Despite of the basic nature of these results, we are not aware of other works where they are stated for this framework;

• we provide a DLMPs-based decentralized coordination procedure (Algo. 4) between the DSO and the LAs that respects the decentralized decision and information structure: flexibilities are computed and managed by LAs from DLMPs incentives imposed by the DSO, and the final obtained profiles result in an optimal solution of the ACOPF problem that can be computed by the DSO. To our limited knowledge, this is the first paper to consider decentralized methods to solve the ACOPF branch flow model considering demand response; • we consider the application of standard decomposition methods as Dual Ascent (Algo. 1) and ADMM (Algo. 2) and show how they can be used within the proposed coordination procedure to respect the above mentioned decentralized features. We propose a novel decomposition method (PDGS, Algo. 3) that has the practical advantage to ensure primal feasibility at each iteration, and we prove its convergence (Thm. 4);

• we analyze the proposed procedure based on DLMPs from a mechanism design perspective. We show, through a counter-example, that the DLMPs-based mechanism is not incentive compatible in general (Example 1). To our limited knowledge, this is the first time where this result is stated for this framework. We also compare the DLMPs-based mechanism to the standard VCG mechanism, a mechanism which satisfies the incentive-compatible property, and explain how VCG could be implemented in a decentralized way;

• last, we provide a numerical illustration of the proposed framework, based on the extension of the 15 nodes network example considered in [19] to a multi-time periods and flexible consumption framework. We compare numerically the application of decentralized algorithms such as ADMM and PDGS, and compare the payments obtained under the DLMPs-based mechanism and VCG mechanism.

**Structure.** The remaining of the paper is organized as follows. In Sec. 1, we detail the model of the network constraints, load flexibility aggregator and objectives. In Sec. 2, we state two theoretical results ensuring the exactness of the SOCP relaxation for the OPF problem in multi-time periods. In Sec. 3, we analyze the DLMPs obtained as optimal dual variables of the SOCP relaxation, and state different properties on these values. In Sec. 4, we present different distributed algorithms that can be used to implement the proposed DLMPs-based decentralized coordination procedure. In Sec. 5, we present the proposed procedure from a mechanism design perspective, and we give a counter-example showing that this procedure is not incentive compatible. We present how the VCG mechanism could be used in a decentralized way. Last, Sec. 6 is devoted to numerical illustrations of the proposed procedure and using two different numerical methods (ADMM and PDGS). We consider a 15-nodes network that was already considered in the literature, and consider two time periods.

NOTATION. We use **bold** font to denote vectors (e.g. x) as opposed to scalars (e.g. x). Sets are denoted by calligraphic letters (e.g.  $\mathcal{T}, \mathcal{N}, \mathcal{A}$ ), except  $\mathscr{P}$  which is used to label optimization problems. For a problem  $\mathscr{P}$ , sol( $\mathscr{P}$ ) denotes the set of optimal solutions of  $\mathscr{P}$ .

# 1 Aggregators on Distribution Network

We consider a distribution network represented by a set of nodes  $\mathcal{N} \stackrel{\Delta}{=} \{1, \ldots, N\}$  and given as a graph  $\mathcal{G} \stackrel{\Delta}{=} (\mathcal{N}_+, \mathcal{E})$ , where  $\mathcal{N}_+ \stackrel{\Delta}{=} \mathcal{N} \cup \{0\}$  with 0 denoting the root node and corresponding to the feeder node (link with transportation network).

Distribution networks are usually designed such that there is no cycle in the electricity lines. Thus, the graph  $\mathcal{G}$  is a tree.

Each node  $n \in \mathcal{N}$  corresponds to an individual household, a group of households or a commercial building linked to the distribution network. We assume that the operation of the distribution network and the management of flexibilities is done on a common time horizon  $\mathcal{T}$  (e.g. a day), given as a finite set of discrete time periods:

$$\mathcal{T} \stackrel{\Delta}{=} \{1, \dots, T\}.$$

### 1.1 Branch Flow Model and SOCP relaxation

We use the branch flow model and the SOCP relaxation introduced in [20] and also considered in [19].

Following [19], we use  $p_n$ ,  $q_n$  to denote active and reactive power consumption at node n: thus  $p_n < 0$ means that there is production at bus n. At the root (feeder) node n = 0, we expect that some power will be produced (or bought from the market) and that there is no consumption: we therefore assume  $p_{0,t} \leq 0$ . Variable  $v_n$  stands for the squared voltage magnitude at bus n. Variables  $f_n$ ,  $g_n$  and  $\ell_n$  denote the active and reactive power flows and the squared current magnitude on the line from n to the unique ancestor of node n, denoted by  $n_-$ . The resistance and reactance on this line are denoted  $R_n$  and  $X_n$ , while the



Figure 1:  $\Pi$ -model and notations for line from node n to n.

shunt conductance and susceptance at node n are denoted  $G_n$  and  $B_n$ . The power flow magnitude limit (line capacity) on line  $(n, n_{-})$  is denoted by  $S_n$ . Fig. 1 recalls the notation used to describe the network parameters.

We obtain the set of *branch flow* equations:

$$v_{n,t} - 2(R_n f_{n,t} + X_n g_{n,t}) + \ell_{n,t} (R_n^2 + X_n^2) = v_{n,t}, \ \forall n \in \mathcal{N}$$
(1a)

$$f_{n,t} - \sum_{m:m_{-}=n} (f_{m,t} - \ell_{m,t} R_{m,t}) + p_{n,t} + G_n v_{n,t} = 0, \forall n \in \mathcal{N}_+$$
(1b)

$$g_{n,t} - \sum_{m:m_{-}=n} (g_{m,t} - \ell_{m,t} X_m) + q_{n,t} - B_n v_{n,t} = 0, \ \forall n \in \mathcal{N}_+$$
(1c)

$$f_{n,t}^2 + g_{n,t}^2 \leqslant v_{n,t}\ell_{n,t} , \ \forall n \in \mathcal{N}$$
(1d)

$$f_{n,t}^2 + g_{n,t}^2 \leqslant S_n^2$$
 ,  $orall n \in \mathcal{N}$ 

$$(f_{n,t} - R_n \ell_{n,t})^2 + (g_{n,t} - X_n \ell_{n,t})^2 \leqslant S_n^2 , \ \forall n \in \mathcal{N}$$

$$(1f)$$

(1e)

$$\underline{V}_n \leqslant v_{n,t} \leqslant \overline{V}_n \ , \ \forall n \in \mathcal{N}_+$$
(1g)

and we further denote by  $\beta_{n,t}, \lambda_{n,t}^{p}, \lambda_{n,t}^{q} \in \mathbb{R}$  the Lagrangian multipliers associated respectively to (1a), (1b), (1c), and by  $\gamma_{n,t}, \eta_{n,t}^{+}, \sigma_{n,t}, \overline{\sigma}_{n,t} \geq 0$  the ones associated to constraints (1d), (1e), (1f), (1g). In (1), the equality  $f_{n,t}^{2} + g_{n,t}^{2} = v_{n,t}\ell_{n,t}$  defining the current magnitude  $\ell_{n,t}$  in the actual branch flow model, is *relaxed* as the inequality (1d), which is a cone constraint (see [6] for more details), defining what we refer to as the SOCP relaxation for the ACOPF problem.

#### 1.2 Electricity Load Aggregators

We consider that a set  $\mathcal{A}$  of several *Load Aggregators* (LAs) coexist on the distribution network. Each LA  $a \in \mathcal{A}$  manages a subset  $\mathcal{N}_a$  of the nodes in the network, such that  $\bigcup_a \mathcal{N}_a$  forms a partition of  $\mathcal{N}$  (each node is affiliated with one LA).

The active and reactive power at each node is not fixed but *flexible*: the LA  $a \in \mathcal{A}$  manages the *flexible* net power consumption  $(p_{n,t}, q_{n,t})_{t \in \mathcal{T}}$  of individual consumers at n for each node  $n \in \mathcal{N}_a$ , w.r.t. individual constraints. We consider the possible presence of local renewable energy sources (e.g. photovoltaic panels) that can also be managed by the LA, such that  $p_{n,t}$  is composed of a production part  $p_{n,t}^{\mathrm{p}} \ge 0$  and a consumption part  $p_{n,t}^{\mathrm{c}} \ge 0$ , as:

$$\forall n \in \mathcal{N}, \forall t \in \mathcal{T}, \ p_{n,t} = p_{n,t}^{c} - p_{n,t}^{p} .$$
(2a)

The constraints on the consumption of each node n are described through a global energy demand  $E_n$  over the T time periods, as well as lower and upper bounds for each time period, that is:

$$\sum_{t \in \mathcal{T}} p_{n,t}^{c} \ge E_{n} \tag{2b}$$

$$\underline{P}_{n,t} \leqslant p_{n,t}^{c} \leqslant P_{n,t} , \qquad (2c)$$

and we denote by  $\alpha_n \ge 0$  (resp.  $\underline{\nu}_{n,t}$ ,  $\overline{\nu}_{n,t}$ ) the Lagrangian multipliers associated to (2b) (resp. (2c). Constraints (2b)-(2c) give a simple model for deferrable loads such as electric vehicles and water heaters, which has been widely used [24–29].

In practice, each LA can aggregate the flexibilities offered by individual end-consumers to fit in the model (2b)-(2c). The same idea of aggregate set of constraints in a particular form is formulated for instance in [30], where the authors propose an aggregation procedure considering *zonotopic sets* instead of the simplex structure (2b)-(2c).

We consider that active and reactive consumptions are correlated by a given ratio (depending on the type of appliances) as:

$$q_{n,t}^{c} = \tau_n^{c} p_{n,t}^{c} .$$
<sup>(2d)</sup>

Each LA also controls the power  $(p_{n,t}^{\rm p})_{n\in\mathcal{N}_{a},t}$  produced by distributed energy resources (DERs) across its affiliated nodes  $\mathcal{N}_{a}$ . The DERs [23] we consider are local and renewable energy (either photovoltaic or wind power) installed in households. We consider that the power  $p_{n,t}^{\rm p}$  produced at period t is upper bounded by an intermittent available power  $P_{n,t}$  (which depends on the DERs capacities and the wind or sun power), and can be adjusted within  $[0, P_{n,t}]$ . The associated produced reactive power  $q_{n,t}^{\rm p}$  can be adjusted through the control of smart inverters [31], which gives:

$$0 \leqslant p_{n,t}^{\mathbf{p}} \leqslant \overline{P}^{\mathbf{p}} \tag{2e}$$

$$\underline{\rho}_{n,t}^{\mathrm{p}} p_{n,t}^{\mathrm{p}} \leqslant q_{n,t}^{\mathrm{p}} \leqslant \overline{\rho}_{n,t}^{\mathrm{p}} p_{n,t}^{\mathrm{p}} .$$

$$(2f)$$

We consider that DERs are used at cost zero by the LA operating them: incentives and costs can be distributed by the LA to its affiliated households in a separate process. The study of interactions between an LA and its affiliated consumers is beyond the scope of this paper.

We define the cost function of LA a as  $\phi_a(\cdot)$  and assume that it depends on the active consumption profiles  $(p_n)_{n \in \mathcal{N}_a}$ . The cost function  $\phi_a$  is determined by exogenous parameters (e.g. from day-ahead electricity market prices) or by some incentives from the system operator. Thus, the *local* problem  $\mathcal{P}_a$  of LA a is formulated as:

$$\min_{\boldsymbol{x}_a = (\boldsymbol{p}_n, \boldsymbol{q}_n)_{n \in \mathcal{N}_a}} \phi_a((\boldsymbol{p}_n)_{n \in \mathcal{N}_a}) \tag{P_a}$$
s.t. (2)

where  $\boldsymbol{x}_a \stackrel{\Delta}{=} (\boldsymbol{p}_n, \boldsymbol{q}_n)_{n \in \mathcal{N}_a}$  denote the variables of LA  $a \in \mathcal{A}$  that are controlled locally by a, and  $\boldsymbol{p}_n \stackrel{\Delta}{=} (p_{n,t})_{t \in \mathcal{T}}, \ \boldsymbol{q}_n \stackrel{\Delta}{=} (q_{n,t})_{t \in \mathcal{T}}.$ 

#### **1.3** Distribution System Operator

The Distribution System Operator (DSO) is a central, independent entity in charge of the operation of the distribution network, which is able to impose (price) incentives to LAs.

In most of the electric systems, the DSO also bears the costs of the network losses, by buying the necessary energy at the day-ahead market price. The corresponding fees are usually recovered by taxes to utilities collected by the DSO.

We assume the existence of underlying energy price functions  $(c_t(.))_{t\in\mathcal{T}}$  modeling, for instance, an electricity market or some production costs. We consider different possible objective functions for the DSO:

i) minimization of the *social cost* of LAs (in this case, the DSO has no proper cost function):

$$SC(\boldsymbol{p}) \stackrel{\Delta}{=} \sum_{a \in \mathcal{A}} \phi_a((p_{n,t})_{nt}) = \sum_{t \in \mathcal{T}} c_t \left( \sum_{n \in \mathcal{N}} p_{n,t} \right) ; \qquad (3a)$$

ii) minimization of the total active power injected at the substation node 0 into the grid (e.g. bought at the DA market price):

$$\phi_{\rm inj}(\boldsymbol{p}_0) \stackrel{\Delta}{=} \sum_{t \in \mathcal{T}} c_t(p_{0t}^{\rm p}) = \sum_{t \in \mathcal{T}} c_t(-p_{0t}) , \qquad (3b)$$

where, following [17] and others, we assume that for each time period t, there is an energy cost function which is affine and increasing, i.e.,  $c_t(x) \stackrel{\Delta}{=} \alpha_t x + \beta_t x^2$  for some  $\alpha_t, \beta_t \ge 0$ .

iii) minimization of active network losses:

$$\phi_{\text{loss}}(\boldsymbol{\ell}) \stackrel{\Delta}{=} \sum_{t \in \mathcal{T}} \sum_{n \in \mathcal{N}} R_n \ell_{n,t} .$$
(3c)

From a multi-agent point of view, the objectives concern different entities: the cost  $\phi_a$  in (3a) concerns the LA *a*, while the costs (3b) and (3b) make more sense at the level of the DSO. It is thus relevant to differentiate both cases by the following notation:

- $\boldsymbol{x}_{\mathcal{A}} \stackrel{\Delta}{=} (\boldsymbol{x}_a)_{a \in \mathcal{A}}$  denotes the LAs variables as defined above, while  $\phi_{\mathcal{A}}(\boldsymbol{x}_{\mathcal{A}}) \stackrel{\Delta}{=} \sum_a \phi_a(\boldsymbol{x}_a)$  denotes the LAs part in the cost function;
- $\boldsymbol{x}_0 \stackrel{\Delta}{=} (\boldsymbol{p}_0, \boldsymbol{q}_0, \boldsymbol{v}, \boldsymbol{\ell}, \boldsymbol{f}, \boldsymbol{g})$  denotes the DSO variables, while  $\phi_0(\boldsymbol{x}_0) \stackrel{\Delta}{=} \phi_{\text{inj}}(\boldsymbol{p}_0) + \alpha_{\text{loss}}\phi_{\text{loss}}(\boldsymbol{\ell})$  denotes the DSO part in the cost function.

In what follows, we will assume that the DSO objective function  $\Phi$  will be either  $\phi_{\mathcal{A}}$  (as the minimization of social cost) or  $\phi_0$ , or a linear combination of the three objectives (3):

$$\Phi(oldsymbol{x}) \stackrel{\Delta}{=} \phi_0(oldsymbol{x}_0) + \phi_\mathcal{A}(oldsymbol{x}_\mathcal{A}) \; .$$

In the decentralized framework adopted of this paper, the DSO considers the local variables  $\boldsymbol{x}_{\mathcal{A}} \triangleq (p_n, q_n)_{n \in \mathcal{N}}$  as fixed parameters, as those variables are managed by the LAs. Moreover, the DSO has no access to the cost function  $\phi_a$  of each LA a and does not consider these costs in its optimization. Thus, the DSO faces the following optimization problem:

$$\min_{oldsymbol{x}_0=(oldsymbol{p}_0,oldsymbol{q}_0,oldsymbol{v},oldsymbol{\ell},oldsymbol{f},oldsymbol{g})} (\mathscr{P}_0(oldsymbol{x}_A))$$
  
s.t. (1).

Despite he does not control the local variables  $x_A$ , the DSO is interested in finding the solution that is socially optimal for the whole system, that is, obtaining an optimal solution of the global *centralized* problem:

$$\min_{\boldsymbol{x}_0, \boldsymbol{x}_{\mathcal{A}}} \Phi(\boldsymbol{x}) \tag{P*}$$
s.t.  $(1-2)$ .

From now on, we assume that problem  $(\mathscr{P}^{\star})$  has a solution:

Assumption 1. There exists  $(\mathbf{x}_0, \mathbf{x}_A)$  satisfying (1 - 2) or, equivalently, problem  $(\mathscr{P}^{\star})$  is feasible.

In what follows, we recall that the SOCP relaxation  $(\mathscr{P}^*)$  can be exact: a solution of this problem will, in many cases, give an optimal solution of the original OPF problem (i.e. the same problem  $(\mathscr{P}^*)$  with constraint (1d) written as an equality).

# 2 Exactness of SOCP relaxation

In [6, 11], the authors show that, in a radial network, the SOCP relaxation  $\mathscr{P}^*$  of the nonlinear OPF problem is exact under some specific assumptions. The first result stated below is a straightforward extension of [6, Thm. 1] to the multi-time periods OPF problem ( $\mathscr{P}^*$ ).

**Theorem 1.** Suppose that the objective function  $\Phi$  is convex, strictly increasing in  $\ell$ , independent of f, g, plus one of the following:

- $\Phi$  is nonincreasing in  $p^c, q^c > 0$ , and upper bounds (2c),(2d) on  $p^c, q^c$  are not binding (that is,  $\overline{P}_{n,t} = \infty, \overline{Q}_{n,t} = \infty$ );
- $\Phi$  is nondecreasing in  $p^{p}, q^{p} > 0$ , and lower bounds (2e), (2f) on  $p^{p}, q^{p}$  are not binding;

then the SOCP relaxation  $(\mathscr{P}^{\star})$  given above is exact.

The authors in [11] also consider hypotheses on the voltage magnitude constraints that should not be binding on a strong sense. Thm. 2 below is an immediate extension of [11, Thm.1] to multi-time periods.

**Theorem 2.** Let  $\mathcal{P}_n = \{n, n_-, \dots, 0\} \subset \mathcal{N}_+$  denotes the unique path from n to root node 0. If  $\Phi(.)$  is strictly increasing in  $p_0$  and if:

• there is no shunt capacitances and admittances  $(\forall n \in \mathcal{N}, B_n = G_n = 0);$ 

• for any optimal  $\mathbf{x} = (\mathbf{p}, \mathbf{q}, \mathbf{f}, \mathbf{g}, \mathbf{v}, \boldsymbol{\ell}) \in \operatorname{sol}(\mathscr{P}^{\star})$ , the linearized flow solutions (considering  $\ell_{n,t} = 0$  in (1)):

$$\hat{f}_n(\boldsymbol{p}_t) \stackrel{\Delta}{=} -\sum_{m:n\in\mathcal{P}_m} p_{m,t}, \quad \hat{g}_n(\boldsymbol{q}_t) \stackrel{\Delta}{=} -\sum_{m:n\in\mathcal{P}_m} q_{m,t}, \\ \hat{v}_{n,t}(\boldsymbol{x}) \stackrel{\Delta}{=} V_0 + 2\sum_{m\in\mathcal{P}_n} R_m \hat{f}_m(\boldsymbol{p}_t) + X_m \hat{g}_m(\boldsymbol{q}_t)$$

verifies:

• for any  $t \in \mathcal{T}$ , any path  $(n_1, \ldots, n_l)$  to a leaf bus  $l \in \mathcal{N}$ , and any  $(1 \leq s \leq k \leq l)$ , we have:

$$\underline{A}_{n_s,t} \dots \underline{A}_{n_{k-1},t} u_{n_k} > 0 \text{ with } u_n \stackrel{\Delta}{=} \begin{pmatrix} R_n \\ X_n \end{pmatrix}$$
  
and 
$$\underline{A}_{n,t} \stackrel{\Delta}{=} I - \frac{2}{\underline{V}_n} \begin{pmatrix} R_n \\ X_n \end{pmatrix} \left( [\hat{f}_n(\underline{\boldsymbol{P}}_t)]^+ \quad [\hat{g}_n(\underline{\boldsymbol{Q}}_t)]^+ \right)$$

then the SOCP relaxation  $(\mathscr{P}^{\star})$  given above is exact.

 $\hat{v}_{n,t}(\boldsymbol{x}) < \overline{V}_n.$ 

It has been verified in [11] that the conditions of Thm. 2 are verified in many standard networks. More importantly, the conditions of Thms. 1 and 2 are *sufficient* conditions, but are not necessary: as shown in the example of Sec. 6, but also in [11], in general the SOCP relaxation ( $\mathscr{P}^*$ ) is exact even if conditions of Thms. 1 and 2 do not hold.

The objective of this paper is not to improve those results of exactness, but to rely on the SOCP relaxation of the branch flow model to design an efficient coordination procedure between the DSO and LAs while considering the decentralized information structure. Thus, for the remaining of the paper, we make the following assumption.

**Assumption 2.** For the instances considered, problem  $(\mathscr{P}^*)$  is an exact relaxation of the actual ACOPF problem.

Assumption 2 is easy to verify a posteriori for a solution: it suffices to check that (1d) is an equality.

# 3 Distribution Locational Marginal Prices

The idea of using DLMPs has been considered in the literature in the last five years [17],[23],[19]. In addition to being mathematically funded, DLMPs provide a decentralized tool that has shown its efficiency for more than a decade at the transmission level.

In a context of an important level of local renewable energy, DLMPs for the *reactive* power part [22] can also be a valuable tool to improve the stability and power quality of the distribution grid. In some cases, the reactive power can be adapted locally, for instance through smart inverters associated to renewable sources. Thus, in this paper, we will consider DLMPs for both the active power  $p_n$  and the reactive power  $q_n$  for node n, as defined in Sec. 1.

Besides, advances in conic optimization to solve the OPF problem (SOCP ( $\mathscr{P}^*$ ) and SDP [32] relaxations) make the idea of relying on DLMPs for decentralized coordination more relevant. Indeed, by solving the SOCP problem ( $\mathscr{P}^*$ ) or ( $\mathscr{P}_0(\mathbf{x}_A)$ ) representing an instance of OPF with standard interior point methods [10, Ch. 11], the active (resp. reactive) DLMPs are directly obtained by the system operator as the dual solutions ( $\lambda_n^{\rm p})_{n\in\mathcal{N}}$  (resp. ( $\lambda_n^{\rm q})_{n\in\mathcal{N}}$ ), and can be transmitted to the LAs as price incentives. This is the basis of the decentralized coordination methods proposed in Sec. 4.

The DLMPs  $(\lambda_n^{\rm p}, \lambda_n^{\rm q})$  emerging as Lagrangian multipliers of the SOCP formulation (1) can be decomposed and interpreted. Prop. 1 completes [19, Prop. 3.2] where the author studies different interpretations of DLMPs in the SOCP formulation (1) of the ACOPF, as well as in two other ACOPF formulations.

**Proposition 1.** The DLMPs  $(\lambda_n^p, \lambda_n^q)$  at node *n* can be expressed as a linear combination of the DLMPs of the ancestor node *n\_*, in addition to some dual quantities related to the line capacity constraints (1e),(1f) and the voltage definition constraints (1a),(1d):

$$\lambda_n^p = \lambda_{n_\perp}^p - 2\boldsymbol{f}_n\boldsymbol{\gamma}_n - 2\boldsymbol{f}_n\boldsymbol{\eta}_n^+ - 2(\boldsymbol{f}_n - R_n\boldsymbol{\ell}_n)\boldsymbol{\eta}_n^- + 2\boldsymbol{\beta}_nR_n,$$
  
$$\lambda_n^q = \lambda_{n_\perp}^q - 2\boldsymbol{g}_n\boldsymbol{\gamma}_n - 2\boldsymbol{g}_n\boldsymbol{\eta}_n^+ - 2(\boldsymbol{g}_n - X_n\boldsymbol{\ell}_n)\boldsymbol{\eta}_n^- + 2\boldsymbol{\beta}_nX_n.$$

*Proof.* The Lagrangian function associated to problem  $(\mathscr{P}_0(\boldsymbol{x}_A))$  is:

$$\mathcal{L} = \phi_0(\boldsymbol{x}) + \sum_{t \in \mathcal{T}} \sum_{n \in \mathcal{N}} \left[ \eta_{n,t}^+ \times \left( f_{n,t}^2 + g_{n,t}^2 - S_n^2 \right) + \eta_{n,t}^- \times \left( \left( f_{n,t} - R_n l_{n,t} \right)^2 + \left( g_{n,t} - X_n l_{n,t} \right)^2 - S_n^2 \right) \right. \\
\left. + \beta_{n,t} \times \left( v_{n,t} - 2(R_n f_{n,t} + X_n g_{n,t}) + l_{n,t} (R_n^2 + X_n^2) - v_{n,t} \right) + \gamma_{n,t} \times \left( f_{n,t}^2 + g_{n,t}^2 - v_{n,t} l_{n,t} \right) \right. \\
\left. + \lambda_{n,t} \times \left( f_{n,t} - \sum_{m \in \delta_n^+} \left( f_{m,t} - l_{m,t} R_{m,t} \right) + p_{n,t} + G_n v_{n,t} \right) \right. \\
\left. + \mu_{n,t} \times \left( g_{n,t} - \sum_{m \in \delta_n^+} \left( g_{m,t} - l_{m,t} X_m \right) + q_{n,t} - B_n v_{n,t} \right) \right. \right. \tag{4}$$

We can then obtain the equalities of Prop. 1 from the KKT conditions of optimality, as  $\frac{\partial \mathcal{L}}{\partial f_n} = 0$  and  $\frac{\partial \mathcal{L}}{\partial g_n} = 0.$ 

Prop. 1 does not provide a closed form of the DLMPs, as we cannot obtain an explicit expression of Lagrangian multipliers  $\gamma_n, \beta_n$ . The interpretation of multipliers  $\gamma_n, \beta_n$  is not straightforward, as noticed in [19], where the author states that the DLMPs  $\lambda_n^p$  can be expressed as nonlinear functions of  $\lambda_{n_-}^p, \lambda_n^q, \lambda_{n_-}^q, \eta_n^+$  and  $\eta_n^-$ , although these functions are implicit. However, Prop. 1 shows that the DLMPs at a given node are linearly linked to the DLMPs at the parent's node. This is further highlighted in Prop. 2 below where it is shown that, if reactances are negligible, then the DLMPs at one node are equal to the DLMPs at the ancestor node. **Proposition 2.** In the limit of negligible reactances and shunt reactances at node n, i.e.

$$R_n, X_n, G_n, B_n \longrightarrow 0$$

and if the line  $(n, n_{-})$  is not saturated at time t (i.e. inequalities (1e),(1f) are strict), then the DLMPs at n at t and at the parent node  $n_{-}$  are equal:

$$|\lambda_{n,t}^p - \lambda_{n,-t}^p| \longrightarrow 0 , \quad |\lambda_{n,t}^q - \lambda_{n,-t}^q| \longrightarrow 0 .$$
(5)

*Proof.* As capacity constraints are not binding, we get from the complementarity conditions that  $\eta_{n,t}^+ = \eta_{n,t}^- = 0$ . From the KKT condition obtained by taking the derivative of the Lagrangian w.r.t  $\ell_{n,t}$  and as  $R_n = X_n = G_n = B_n = 0$ , we get:

$$0 = \gamma_{n,t} v_{n,t} \; .$$

As  $v_{n,t} > 0$ , we necessarily have  $\gamma_{n,t} = 0$ . Thus, simplifying the equalities stated in Prop. 1 gives exactly (5).

Prop. 2 has further consequences: if the conditions hold for all nodes  $n \in \mathcal{N}$ , then all DLMPs are equal to the DLMPs at the root node  $\lambda_0^{\mathrm{p}}, \lambda_0^{\mathrm{q}}$ . In particular, for each  $n \in \mathcal{N}, \lambda_n^{\mathrm{p}} = \nabla_{p_0^{\mathrm{p}}} \phi_{\mathrm{inj}}(p_0^{\mathrm{p}})$  i.e. the DLMPs are all equal to the root node marginal production cost, which is what we expect to obtain. If resistances are nonzero and capacity constraints are saturated, the DLMPs will deviate from this value to account for the costs of losses and congestion effects.

Let us reformulate problem ( $\mathscr{P}^*$ ) formally to consider the decomposition between the DSO and LAs, as:

$$\min_{\boldsymbol{x}} \Phi(\boldsymbol{x}) \tag{6a}$$

$$A_0 \boldsymbol{x}_0 + B \boldsymbol{x}_{\mathcal{A}} = \boldsymbol{b} \tag{6b}$$

$$x_0 \in \mathcal{X}_0$$
 (6c)

$$x_{\mathcal{A}} \in \mathcal{X}_{\mathcal{A}},$$
 (6d)

where  $\boldsymbol{x} \stackrel{\Delta}{=} (\boldsymbol{x}_0, \boldsymbol{x}_{\mathcal{A}})$  and where

•  $\boldsymbol{x}_{\mathcal{A}} \stackrel{\Delta}{=} (\boldsymbol{x}_a)_{a \in \mathcal{A}}$  denotes the LAs (consumption) variables with feasibility set  $\mathcal{X}_{\mathcal{A}}$  with

$$\boldsymbol{x}_a \stackrel{\Delta}{=} (p_{n,t}, q_{n,t})_{n \in \mathcal{N}_a, t \in \mathcal{T}}$$

related to her affiliated nodes (and the corresponding consumption/production variables);

•  $x_0$  denotes the DSO (operation) variables with feasibility set  $\mathcal{X}_0$ , that is:

$$oldsymbol{x}_0 \stackrel{\Delta}{=} (oldsymbol{p}_0,oldsymbol{q}_0,oldsymbol{v},oldsymbol{\ell},oldsymbol{f},oldsymbol{g})$$
 .

Constraint (6b) refers to the coupling constraints between LAs and DSO variables (1b). It is assumed that matrix B is block diagonal  $B = \text{diag}(B_a)_{a \in \mathcal{A}}$ , where  $B_a \in \mathcal{M}_{k_a,n_a}(\mathbb{R})$ . We denote by  $k \stackrel{\Delta}{=} \sum_a k_a$ the dimension of the LAs variables, thus  $A_0 \in \mathcal{M}_{k,n_0}(\mathbb{R})$ . From now on, the notation  $\lambda \in \mathbb{R}^k$  is used to denote the complete vector of Lagrangian multipliers associated to (6b), corresponding to  $(\lambda^{\mathrm{p}}, \lambda^{\mathrm{q}})$  in Problem  $(\mathscr{P}^*)$ .

From (6), we derive:

$$\min_{\boldsymbol{x}_0 \in \mathcal{X}_0, \boldsymbol{x}_A \in \mathcal{X}_A} \Phi(\boldsymbol{x}) = \min_{\boldsymbol{x}_A \in \mathcal{X}_A} \phi_{\mathcal{A}}(\boldsymbol{x}_A) + \frac{\min_{\boldsymbol{x}_0 \in \mathcal{X}_0} \phi_0(\boldsymbol{x}_0)}{\text{s.t. } A_0 \boldsymbol{x}_0 + B \boldsymbol{x}_A = \boldsymbol{b}} = \min_{\boldsymbol{x}_A \in \mathcal{X}_A} \phi_{\mathcal{A}}(\boldsymbol{x}_A) + F(\boldsymbol{x}_A)$$
(7)

where

$$F(\boldsymbol{x}_{\mathcal{A}}) \stackrel{\Delta}{=} \min_{\boldsymbol{x}_0 \in \mathcal{X}_0} \max_{\boldsymbol{\lambda}} \phi_0(\boldsymbol{x}_0) + \boldsymbol{\lambda}^{\top} (A_0 \boldsymbol{x}_0 + B \boldsymbol{x}_{\mathcal{A}} - \boldsymbol{b}) .$$
(8)

The function F is not necessarily differentiable. However, it is subdifferentiable as it is convex. From there we can derive the following result on the DLMPs:

**Proposition 3.** For each node  $n \in \mathcal{N}$ , the DLMPs  $\lambda_n^p, \lambda_n^q$  correspond to subgradients of the DSO's optimal cost with respect to  $p_n$  (resp  $q_n$ ), that is

$$\forall t \in \mathcal{T}, \ \lambda_{n,t}^p \in \partial_{p_{n,t}} F(\boldsymbol{x}_{\mathcal{A}}) \ , \ \lambda_{n,t}^q \in \partial_{q_{n,t}} F(\boldsymbol{x}_{\mathcal{A}})$$

*Proof.* We apply the sensitivity inequality [10, sec. 5.57] to the problem defined by  $F(\boldsymbol{x}_{\mathcal{A}})$ , parameterized by  $\boldsymbol{x}_{\mathcal{A}}$ . This inequality corresponds to the definition of the subgradients of F(.).

Because  $\phi_0$  is not strictly convex w.r.t.  $x_0$ , in general we cannot guarantee the uniqueness of the DLMPS.

From Prop. 3, one could wonder if DLMPs are to be always positive. Indeed, a slight increase in active or reactive consumption at node n would, in general, trigger the same increase (in addition to network losses) in production at the root node 0 and, under the assumption that production costs  $\phi_0$  is strictly increasing in  $p_{0,t}^p$ , then  $\nabla_{p_{0,t}^p} \phi_0$  would be positive. However, this is not always the case: the numerical example given in Sec. 6 shows a case where a DLMP is slightly negative.

# 4 Decentralized Coordination Methods

The idea behind the proposed coordination algorithm is to consider the OPF problem in a decentralized framework, where different parts of the set of decision variables are managed by different agents:

• each LA  $a \in \mathcal{A}$  decides of local consumption variables  $x_a$  related to her affiliated nodes (and the corresponding consumption/production variables);

• the DSO is responsible of the operation of the network, that is, of the variables  $x_0$ .

Besides, a decentralized coordination mechanism is also relevant to address the partial information held by each agent. Typically, the network characteristics (topology, capacities, etc.) related to constraints (1) are considered as confidential information by the DSO and shall not be revealed to other actors of the system. On the other hand, consumption and production constraints can constitute private information for electric consumers and, thus, should not be revealed by an aggregator to other actors or network operator.

The essential step in the proposed DLMP-based procedure is to rely on a decomposition method that enables to obtain  $\boldsymbol{x}_{\mathcal{A}}^*$  and DLMPs  $\boldsymbol{\lambda}^*$  while respecting the decentralized structure of decisions and information: the DSO does not have access to  $\mathcal{X}_{\mathcal{A}}$  and is responsible of variables  $\boldsymbol{x}_0$ , while each LA  $\boldsymbol{a}$ does not have access to  $\mathcal{X}_0$  or  $\mathcal{X}_{\tilde{a}}$  for  $\tilde{a} \neq a$ , and is responsible of variables  $\boldsymbol{x}_a$ . In the remaining of this Sec. 4, we review different decomposition methods to be used in this framework.

To ensure the convergence and validity of the different methods, we consider the following additional standard assumption of strong duality:

**Assumption 3.** A constraint qualification (e.g. Slater's condition) holds for (6), such that strong duality holds [10, ch. 5]:

$$\min_{\boldsymbol{x}\in\mathcal{X}}\max_{\boldsymbol{\lambda}\in\mathbb{R}^k}\mathcal{L}(\boldsymbol{x},\boldsymbol{\lambda}) = \max_{\boldsymbol{\lambda}\in\mathbb{R}^k}\min_{\boldsymbol{x}\in\mathcal{X}}\mathcal{L}(\boldsymbol{x},\boldsymbol{\lambda}) \ . \tag{9}$$

#### 4.1 Dual Decomposition

Considering  $x_0$  and  $x_A$  satisfying (6c) and (6d), the Lagrangian function associated to (6) is defined as:

$$\mathcal{L}(\boldsymbol{x}_0, \boldsymbol{x}_{\mathcal{A}}, \boldsymbol{\lambda}) \stackrel{\Delta}{=} \Phi(\boldsymbol{x}) + \boldsymbol{\lambda}^\top (A_0 \boldsymbol{x}_0 + B \boldsymbol{x}_{\mathcal{A}} - \boldsymbol{b}) , \qquad (10)$$

which is a basic ingredient of the following method.

The dual decomposition method [33] relies on the consideration of the subproblems:

$$\min_{\boldsymbol{x}_a \in \mathcal{X}_a} \phi_a(\boldsymbol{x}_a) + \boldsymbol{\lambda}_a^{\top} B_a \boldsymbol{x}_a, \qquad \qquad (\mathscr{P}'_a(\boldsymbol{\lambda}_a))$$

$$\min_{\boldsymbol{x} \in \mathcal{X}_0} \phi_0(\boldsymbol{x}_0) + \boldsymbol{\lambda}^\top A_0 \boldsymbol{x}_0. \tag{($\mathcal{P}_0'(\boldsymbol{\lambda})$)}$$

A dual ascent enables to optimize (6) in a distributed way, by considering the following Algo. 1:

If the sequence  $(\alpha_k)_k$  is chosen such that  $\sum_k \alpha_k = +\infty$  while  $\sum_k \alpha_k^2 < \infty$ , and  $\Phi$  satisfies some strict convexity assumption, Algo. 1 converges to a solution of (6) [33], [34, Ch. 6].

#### 4.2 Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers (ADMM) was originally introduced in [35] and gained in popularity due to applications to machine learning and the seminal survey [36].

As for the Auxiliary Problem Principle, the method relies on the augmented Lagrangian function:

$$\mathcal{L}_{\rho}(\boldsymbol{x}_{0}, \boldsymbol{x}_{\mathcal{A}}, \boldsymbol{\lambda}) \stackrel{\Delta}{=} \Phi(\boldsymbol{x}) + \boldsymbol{\lambda}^{\top} (A_{0}\boldsymbol{x}_{0} + B\boldsymbol{x}_{\mathcal{A}} - \boldsymbol{b}) + \frac{\rho}{2} \|A_{0}\boldsymbol{x}_{0} + B\boldsymbol{x}_{\mathcal{A}} - \boldsymbol{b}\|_{2}^{2} , \qquad (11)$$

where  $\rho > 0$  is a parameter that is used as a step size in the method:

Algo. 2 Decentralized Optimization through ADMM

**Require:**  $\lambda^{(0)}$ , stopping criterion, steps  $(\alpha_k)_k$ 1:  $k \leftarrow 0$ 2: while stopping criterion not true do for each LA  $a \in \mathcal{A}$  do 3: [LA a] receive  $\boldsymbol{\lambda}_a^{(k)}$  and  $A_0 \boldsymbol{x}_0^{(k)}$  from DSO 4:  $\begin{bmatrix} \text{LA } a \end{bmatrix} \boldsymbol{x}_a^{(k+1)} \in \operatorname*{argmin}_{\boldsymbol{x}_a \in \mathcal{X}_a} \phi_a(\boldsymbol{x}_a) + \boldsymbol{\lambda}_a^{(k)\top} B_a \boldsymbol{x}_a + \tfrac{\rho}{2} \left\| A_0 \boldsymbol{x}_0^{(k)} + B \boldsymbol{x}_{\mathcal{A}} - \boldsymbol{b} \right\|_2^2$ 5:end for 6:  $[\text{DSO}] \ \boldsymbol{x}_0^{(k+1)} \in \underset{\boldsymbol{x}_0 \in \mathcal{X}_0}{\operatorname{argmin}} \ \phi_0(\boldsymbol{x}_0) + \boldsymbol{\lambda}^{(k)\top} A_0 \boldsymbol{x}_0 + \frac{\rho}{2} \left\| A_0 \boldsymbol{x}_0 + B \boldsymbol{x}_{\mathcal{A}}^{(k+1)} - \boldsymbol{b} \right\|_2^2$ 7: [DSO]  $\boldsymbol{\lambda}^{(k+1)} = \boldsymbol{\lambda}^{(k)} + \rho (A_0 \boldsymbol{x}_0^{(k+1)} + B \boldsymbol{x}_A^{(k+1)} - \boldsymbol{b})$ 8: 9:  $k \leftarrow k+1$ 10: end while

In ADMM, in addition to communicate the DLMPs  $\boldsymbol{\lambda}^{(k)}$ , the DSO also has to send the current profiles  $A_0 \boldsymbol{x}_0^{(k)}$  to each LA at each iteration k. Getting back to (1b), this means that the DSO communicates a "base" profile  $(\tilde{p}_{n,t}^{(k)}, \tilde{q}_{n,t}^{(k)})_{n,t}$  given by  $\tilde{p}_{n,t}^{(k)} \stackrel{\Delta}{=} -f_{n,t}^{(k)} + \sum_{m:m_{-}=n} (f_{m,t}^{(k)} - \ell_{m,t}^{(k)} R_{m,t}) - G_n v_{n,t}^{(k)}$ , and similarly for  $\tilde{q}_{n,t}^{(k)}$ .

The convergence of ADMM is ensured by the following result:

**Theorem 3.** [36, Sec.3.2.1] Under Assumption 3 and convexity of  $\phi_0$  and  $\phi_A$ , we have the following convergence result:

- feasibility convergence:  $\left\|A_0 \boldsymbol{x}_0^{(k)} + B \boldsymbol{x}_{\mathcal{A}}^{(k)} \boldsymbol{b}\right\| \xrightarrow[k \to \infty]{} 0$ ,
- objective convergence:  $\phi_0(\boldsymbol{x}_0^{(k)}) + \phi_{\mathcal{A}}(\boldsymbol{x}_{\mathcal{A}}^{(k)}) \xrightarrow[k \to \infty]{} \Phi^*$  where  $\Phi^*$  is the optimal value of (6),
- dual (DLMPs) convergence:  $\lambda^{(k)} \xrightarrow[k \to \infty]{} \lambda^*$ , where  $\lambda^*$  are optimal Lagrangian multipliers of (6).

#### 4.3 Primal-Dual Gauss-Seidel (PDGS) Iterations

In Algo. 3 below, we propose a new method, referred to as PDGS, which relies on a Lagrangian relaxation of the coupling constraint (6b) as the dual decomposition methods above. The main difference is that we consider the original instances of  $(\mathscr{P}_0(\boldsymbol{x}_A))$  instead of relaxed problem. For that, we rely on the resolution of the dual problem of OPF problem  $(\mathscr{P}_0(\boldsymbol{x}_A))$  to compute the DLMPs  $\boldsymbol{\lambda}$ , while computing the associated LAs decisions  $\boldsymbol{x}_A$  afterwards. Using the Lagrangian function  $\mathcal{L}$  defined in (10), problem (6) can be written, with  $\mathcal{X} \stackrel{\Delta}{=} \mathcal{X}_0 \times \mathcal{X}_A$ :

$$\inf_{\boldsymbol{x}\in\mathcal{X}}\sup_{\boldsymbol{\lambda}\in\mathbb{R}^{k}}\mathcal{L}(\boldsymbol{x},\boldsymbol{\lambda}),\tag{12}$$

and the dual problem:

$$\sup_{\boldsymbol{\lambda} \in \mathbb{R}^k} \inf_{\boldsymbol{x} \in \mathcal{X}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) = \sup_{\boldsymbol{\lambda} \in \mathbb{R}^k} \psi_0(\boldsymbol{\lambda}, \boldsymbol{x}_{\mathcal{A}}) , \qquad (13)$$

where we consider the *(partial)* dual function  $\psi_0$  defined as:

$$\psi_0(\boldsymbol{\lambda}, \boldsymbol{x}_{\mathcal{A}}) \stackrel{\Delta}{=} \min_{\boldsymbol{x}_0 \in \mathcal{X}_0} \left\{ \Phi(\boldsymbol{x}_0, \boldsymbol{x}_{\mathcal{A}}) + \boldsymbol{\lambda}^\top (A_0 \boldsymbol{x}_0 + B \boldsymbol{x}_{\mathcal{A}} - \boldsymbol{b}) \right\}$$
$$= \min_{\boldsymbol{x}_0 \in \mathcal{X}_0} \left\{ \phi_0(\boldsymbol{x}_0) + \boldsymbol{\lambda}^\top A_0 \boldsymbol{x}_0 \right\} + \phi_{\mathcal{A}}(\boldsymbol{x}_{\mathcal{A}}) + \boldsymbol{\lambda}^\top (B \boldsymbol{x}_{\mathcal{A}} - \boldsymbol{b}) \ .$$

Because  $\mathcal{X}_0$  is a compact subset,  $\psi_0$  is well defined. Using the notation of (6), the problem  $(\mathscr{P}_0(\boldsymbol{x}_A))$  can be reformulated as:

$$\min_{\boldsymbol{x}_0 \in \mathcal{X}_0} \phi_0(\boldsymbol{x}_0)$$
s.t.  $A_0 \boldsymbol{x}_0 = \boldsymbol{b} - B \boldsymbol{x}_{\mathcal{A}}$  ( $\boldsymbol{\lambda}$ )

where  $\lambda$  is the Lagrangian multiplier associated to the equality constraint, such that  $\psi_0$  is the dual function of problem  $(\mathscr{P}_0(\boldsymbol{x}_A))$  (translated by  $\phi_{\mathcal{A}}(\boldsymbol{x}_A)$ ). Moreover, we have:

**Proposition 4.**  $\psi_0$  is concave in  $\lambda$  and convex in  $x_A$ .

*Proof.* The function  $\psi_0$  is the sum of the convex function  $\mathbf{x}_A \mapsto \phi_A(\mathbf{x}_A)$  and of an affine function of  $\mathbf{x}_A$ , thus it is convex in  $\mathbf{x}_A$ . As a minimum of concave functions of  $\boldsymbol{\lambda}$  (because affine), it is concave in  $\boldsymbol{\lambda}$ .  $\Box$ 

The dual problem (13) is always feasible because  $\mathcal{X}_0$  is nonempty and  $\lambda \in \mathbb{R}^k$ . However, it is not necessarily bounded: indeed, because strong duality holds, we know that the dual problem is unbounded *iff* the primal problem ( $\mathscr{P}_0(\boldsymbol{x}_A)$ ) is infeasible [10, Sec.5.2]. The Algo. 3 presented below relies on dual solutions: to ensure its convergence, we rely on truncated dual problems, resulting in bounded dual solutions.

**Proposition 5.** The modified problem  $\mathscr{P}_0^K(\boldsymbol{x}_a)$  with additional variable  $\boldsymbol{u}_+, \boldsymbol{u}_-$ :

$$\min_{\boldsymbol{x}_0 \in \mathcal{X}_0, \ \boldsymbol{u}_+, \boldsymbol{u}_- \ge 0} \phi_0(\boldsymbol{x}_0) + K(\boldsymbol{u}_+ - \boldsymbol{u}_-)$$
s.t.  $A_0 \boldsymbol{x}_0 = \boldsymbol{b} - B \boldsymbol{x}_{\mathcal{A}} + \boldsymbol{u}_+ - \boldsymbol{u}_-$  ( $\boldsymbol{\lambda}$ ) ( $\mathscr{P}_0^K(\boldsymbol{x}_a)$ )

admits the same dual problem as  $(\mathscr{P}_0(\boldsymbol{x}_A))$  with the additional constraint  $K1_k \leq \boldsymbol{\lambda} \leq K1_k$ .

*Proof.* This comes from the definition of the dual problem. Details are omitted.

#### Algo. 3 Decentralized Optimization through PDGS

**Require:**  $\lambda^{(0)}$ , stopping criterion 1:  $k \leftarrow 0$ 2: while stopping criterion not true do for each LA  $a \in \mathcal{A}$  do 3: [LA a]  $\boldsymbol{x}_{\mathcal{A}} \in \operatorname*{argmin}_{\boldsymbol{x}_{a} \in \mathcal{X}_{a}} \phi_{a}(\boldsymbol{x}_{a}) + \boldsymbol{\lambda}_{a}^{(k)^{\top}} B_{a} \boldsymbol{x}_{a} = \operatorname*{argmin}_{\boldsymbol{x}_{a} \in \mathcal{X}_{a}} \psi_{0}(\boldsymbol{\lambda}^{(k)}, \boldsymbol{x}_{a})$ update solution  $\boldsymbol{x}_{a}^{(k+1)} \stackrel{\Delta}{=} \frac{1}{k+1} (k \boldsymbol{x}_{a}^{(k)} + \boldsymbol{x}_{a})$ 4: 5: end for if  $\mathscr{P}_0(\boldsymbol{x}_a^{(k+1)})$  is feasible then 6: 7:  $[\text{DSO}] \text{ obtain dual solution } \boldsymbol{\lambda} \arg \max_{\boldsymbol{\lambda} \in \mathbb{R}^k} \psi_0(\boldsymbol{\lambda}, \boldsymbol{x}_{\mathcal{A}}^{(k+1)}) \text{ of problem } \mathscr{P}_0(\boldsymbol{x}_a^{(k+1)})$ 8: else 9:  $[\text{DSO}] \text{ obtain dual solution: } \boldsymbol{\lambda} \in \arg \max_{K \mathbb{1}_k \leqslant \boldsymbol{\lambda} \leqslant K \mathbb{1}_k} \psi_0(\boldsymbol{\lambda}, \boldsymbol{x}_{\mathcal{A}}^{(k+1)}) \text{ of modified problem } \mathscr{P}_0^K(\boldsymbol{x}_a^{(k+1)})$ 10: end if 11: [DSO] update dual solution (DLMPs)  $\boldsymbol{\lambda}^{(k+1)} \stackrel{\Delta}{=} \frac{1}{k+1} (k \boldsymbol{\lambda}^{(k)} + \boldsymbol{\lambda})$ 12: $k \leftarrow k+1$ 13:14: end while

The idea behind Algo. 3 is that, as stated above, the primal problem  $(\mathscr{P}_0(\boldsymbol{x}_A))$  is not always feasible (depending on the value of  $\boldsymbol{x}_A$ ), but the dual problem is always feasible (although it can be unbounded) and we can always get a dual solution  $\boldsymbol{\lambda}$ . We rely on Prop. 5 and solve the modified problem to ensure this dual solution remains bounded. We have the following formal result:

**Proposition 6.** In case of convergence, Algo. 3 provides a DLMP-based decentralized coordination method which enables to optimize DERs while satisfying network constraints, giving an optimal solution of  $(\mathcal{P}^*)$ .

*Proof.* The algorithm is decentralized as  $\phi_{\mathcal{A}}(\boldsymbol{x}_{\mathcal{A}}) = \sum_{a \in \mathcal{A}} \phi_a(\boldsymbol{x}_a)$  is separable and  $B = diag(B_a)_{a \in \mathcal{A}}$  is block-diagonal, so that Line 4 can be executed in a decentralized manner by each LA  $a \in \mathcal{A}$ , while the update of  $\boldsymbol{\lambda}$  (Line 7 to Line 11) is executed independently by the DSO.

Let  $\boldsymbol{x}_{\mathcal{A}}^*, \boldsymbol{\lambda}^*$  be a fixed point of Algo. 3. Then  $(\boldsymbol{x}_{\mathcal{A}}^*, \boldsymbol{\lambda}^*)$  satisfy the KKT conditions of  $(\mathscr{P}_a)$ . Considering a primal solution  $\boldsymbol{x}_0^*$  for  $(\mathscr{P}_0(\boldsymbol{x}_A))$  associated to  $\boldsymbol{\lambda}^*$ , then  $(\boldsymbol{x}_0^*, \boldsymbol{\lambda}^*)$  satisfies the KKT conditions of  $(\mathscr{P}_0(\boldsymbol{x}_A))$ . The union of the two sets of conditions gives exactly the KKT conditions of problem  $(\mathscr{P}^*)$ , which shows that  $(\boldsymbol{x}_0^*, \boldsymbol{x}_A^*, \boldsymbol{\lambda}^*) \in \operatorname{sol}(\mathscr{P}^*)$ .

There are two main advantages of Algo. 3:

- 1. we consider the actual problems on both sides: LAs simply face the price incentives given by the DLMPs  $\lambda$  in their local optimization problem, while the DSO computes the network optimal power flow solution given the consumptions profiles on each node;
- 2. the method ensures *primal feasibility*: at the end of each iteration and as soon as  $(\mathscr{P}_0(\boldsymbol{x}_A))$  is feasible, the DSO computes a feasible solution  $\boldsymbol{x}_0$  of  $\mathscr{P}_0(\boldsymbol{x}_a^{(k+1)})$  satisfying  $A\boldsymbol{x}_0 + B\boldsymbol{x}_A^{(k+1)} = \boldsymbol{b}$ . This is the main difference with Lagrangian methods such as ADMM where primal feasibility is only *asymptotic* (Thm. 3). In practice, this is of main importance in our framework as the DSO needs a solution that is exactly feasible.

To help understand the convergence conditions of Algo. 3, it is relevant to consider a zero-sum game [37] interpretation:

**Proposition 7.** Consider the zero-sum game on  $\psi_0$  where the first player minimizes  $\psi_0$  on  $\mathbf{x}_A \in \mathcal{X}_A$ , while the second player maximizes  $\psi_0$  on  $\mathbf{\lambda} \in \mathbb{R}_K^k \triangleq {\mathbf{\lambda} \in \mathbb{R}^k \mid \forall m, -K \leq \lambda_m \leq K}$ , for  $K \ge 0$  large enough. Let  $(\mathbf{x}_A^*, \mathbf{\lambda}^*)$  denote a saddle (equilibrium) point of this game. Then, there exists a primal solution  $\mathbf{x}_0^*$  of  $\mathcal{P}_0(\mathbf{x}_a^*)$ , and  $(\mathbf{x}_0^*, \mathbf{x}_A^*)$  defines a solution to central problem  $(\mathcal{P}^*)$ .

Proof. Because of Prop. 4, we have convex-concave saddle function on convex and compact sets, thus the game has a value [37]. Then, the dual problem  $\max_{\boldsymbol{\lambda} \in \mathbb{R}^{k}} \psi_{0}(\boldsymbol{\lambda}, \boldsymbol{x}_{\mathcal{A}}^{*})$  is bounded, and has a solution  $\boldsymbol{\lambda}^{*}$ . Now suppose that we have chosen  $K \geq 0$  such that  $\boldsymbol{\lambda}^{*} \in \mathbb{R}^{K}$ . In that case,  $\boldsymbol{\lambda}^{*}$  is a dual solution of both  $\mathscr{P}_{0}(\boldsymbol{x}_{a}^{*})$  and  $\mathscr{P}_{0}^{K}(\boldsymbol{x}_{a}^{*})$ . We know that there is a solution  $\boldsymbol{x}_{0}^{*}$  to the primal problem  $\mathscr{P}_{0}(\boldsymbol{x}_{a}^{*})$ , associated to  $\boldsymbol{\lambda}^{*}$ , such that  $A_{0}\boldsymbol{x}_{0}^{*} + B_{\mathcal{A}}\boldsymbol{x}_{\mathcal{A}}^{*} - \boldsymbol{b} = 0$ . We have

$$\Phi(\boldsymbol{x}_{0}^{*}, \boldsymbol{x}_{\mathcal{A}}^{*}) + 0 = \mathcal{L}(\boldsymbol{x}_{0}^{*}, \boldsymbol{x}_{\mathcal{A}}^{*}, \boldsymbol{\lambda}^{*})$$

$$= \max_{\boldsymbol{\lambda} \in \mathbb{R}_{K}^{k}} \min_{\boldsymbol{x}_{\mathcal{A}} \in \mathcal{X}_{\mathcal{A}}} \psi_{0}(\boldsymbol{\lambda}, \boldsymbol{x}_{\mathcal{A}})$$

$$= \max_{\boldsymbol{\lambda} \in \mathbb{R}_{K}^{k}} \min_{\boldsymbol{x}_{0} \in \mathcal{X}_{0}, \boldsymbol{x}_{\mathcal{A}} \in \mathcal{X}_{\mathcal{A}}} \mathcal{L}(\boldsymbol{x}_{0}, \boldsymbol{x}_{\mathcal{A}}, \boldsymbol{\lambda})$$

$$= \min_{\boldsymbol{x}_{0} \in \mathcal{X}_{0}, \boldsymbol{x}_{\mathcal{A}} \in \mathcal{X}_{\mathcal{A}}} \max_{\boldsymbol{\lambda} \in \mathbb{R}_{K}^{k}} \mathcal{L}(\boldsymbol{x}_{0}, \boldsymbol{x}_{\mathcal{A}}, \boldsymbol{\lambda})$$

$$= \min_{\substack{\boldsymbol{x}_{0} \in \mathcal{X}_{0}, \boldsymbol{x}_{\mathcal{A}} \in \mathcal{X}_{\mathcal{A}}} \Phi(\boldsymbol{x})$$

$$= \min_{\substack{\boldsymbol{x}_{0} \in \mathcal{X}_{0}, \boldsymbol{x}_{\mathcal{A}} \in \mathcal{X}_{\mathcal{A}}} \Phi(\boldsymbol{x})$$

where (14) follows from Assumption 3.

The interpretation based on a zero-sum game goes further, as Algo. 3 actually implements the so-called *best response* dynamics (BRD). Thus, we are able to show that the method converges, as given in Thm. 4 below.

**Theorem 4.** For  $K \ge 0$  large enough, and under Assumptions. 1 and 3, the sequences  $(\lambda^{(k)})_k$  and  $(\mathbf{x}_A^{(k)})_k$ generated by Algo. 3 converge respectively to a dual and a (partial) primal solutions of central problem  $(\mathcal{P}^{\star}).$ 

*Proof.* Because of Prop. 4,  $\psi_0$  is a convex-concave saddle function on convex and compact strategy sets  $\mathcal{X}_0$ and  $\mathbb{R}_{K}^{k}$ . Thus, we can apply the convergence of best-response in discrete vanishing stepsizes [37, Prop.7] which ensures that the sequences converge to an equilibrium point. We can conclude with Prop. 7.

In Sec. 6, we give a numerical example of the convergence of Algo. 3 and compare it to ADMM. One can observe that, in the example considered here, the convergence of PDGS is quite slow.

#### $\mathbf{5}$ **Decentralized Coordination Mechanism**

The decentralized coordination mechanism that we propose in this paper is the following:

#### Procedure 4 DLMP-based Coordination Procedure

- 1: computation step: an optimization decomposition method is run to coordinate LAs and the DSO, during which each LA  $a \in \mathcal{A}$  sends a sequence of profiles  $(\boldsymbol{x}_a^{(k)})_{k=1}^K$  until convergence to decisions  $\boldsymbol{x}_a^*$ , associated to Lagrangian multipliers (DLMPs)  $\lambda^*$  for the DSO, corresponding to an optimal primaldual solution  $(\boldsymbol{x}_{0}^{*}, \boldsymbol{x}_{A}^{*}, \boldsymbol{\lambda}^{*})$  of (6). In particular, each aggregator agrees on realizing the announced profile  $x_a^*$ ;
- 2: realization step: each LA a realizes the profile  $\hat{x}_a$ , which can be measured by the DSO.
- 3: penalization step: if  $\hat{x}_a \neq x_a^*$  for at least one  $a \in \mathcal{A}$ , then the DSO recomputes DLMPs as the dual solution  $\hat{\lambda}$  of problem  $\mathscr{P}_0(\hat{x}_{\mathcal{A}})$ , and charges each agent *a* with payments  $\mathfrak{P}_a \stackrel{\Delta}{=} (\hat{\lambda} \cdot \hat{x}_a)$  and penalize cheating LAs with a tax  $\tau^{\text{pen}}$ .

#### 5.1Mechanism Design Discussion

Because we rely on a decentralized decomposition method, the exchange of information is limited: in particular, aggregators do not have to send all their information  $(E_n, \underline{x}_n, \overline{x}_n)_{n \in \mathcal{N}_a}$  as considered in some mechanisms as in [29]. Yet, Procedure 4 describes a formal mechanism, with each agent (aggregator) announcing the sequence  $(\boldsymbol{x}_{a}^{(k)})_{k=1}^{K}$ , then realizing  $\hat{\boldsymbol{x}}_{a}$  and being charged  $\mathfrak{P}_{a} \stackrel{\Delta}{=} \hat{\boldsymbol{\lambda}} \cdot \hat{\boldsymbol{x}}_{a}$ . As  $(\boldsymbol{x}_{0}^{*}, \boldsymbol{x}_{\mathcal{A}}^{*}, \boldsymbol{\lambda}^{*})$  constitutes an optimal solution of (6), it is *optimal* for each LA *a* to realize the profile

 $\boldsymbol{x}_a^*$  under the incentives  $\boldsymbol{\lambda}^*$ .

However, aggregators are still required to communicate the sequence of consumption profiles  $(\boldsymbol{x}_{a}^{(k)})_{k=1}^{K}$ From the point of view of mechanism design [38, Part II], one can think that aggregators may be tempted to send profiles  $\tilde{x}_a$  that do not comply with the update rule of the chosen decomposition algorithm, in order to manipulate the DLMPs  $\lambda^*$  computed in step 2. With LA *a* being *truthful*, its final "agreed" profile  $x_a^*$  should always satisfy (up to the convergence error):

$$oldsymbol{x}_a \in \operatorname*{argmin}_{oldsymbol{x}_a \in \mathcal{X}_a} \phi_a(oldsymbol{x}_a) + oldsymbol{\lambda}_a^* B_a oldsymbol{x}_a$$
  
with  $(oldsymbol{\lambda}^*, oldsymbol{x}_0^*)$  s.t.  $oldsymbol{x}_0 \in \operatorname*{argmin}_{oldsymbol{x}_0 \in \mathcal{X}_0} \phi_0(oldsymbol{x}_0) + oldsymbol{\lambda}^* A oldsymbol{x}_0$ .

Because the operator is able to verify (step 3) if the realized profile  $\hat{x_a}$  corresponds to the agreed profile  $\tilde{x}_a$ , the operator can prevent deviations of aggregators on step 3 by imposing a large tax  $\tau^{\text{pen}}$  on cheating aggregators.

### 5.2 A DLMP-based coordination Procedure is not Incentive-Compatible

Preventing the LAs to deviate in step 2 is not sufficient to ensure the truthfulness of the mechanism: a cheating aggregator could also respond untruthfully during the computation step with a sequence of profiles  $(\tilde{x}_a^{(k)})_{k=1}^K$  with  $\tilde{x}_a^{(K)} \stackrel{\Delta}{=} \tilde{x}_a$ . More precisely, if an LA want to cheat, it can respond to each iteration DLMPs  $\tilde{\lambda}^{(k)}$  by acting with a different cost function  $\phi_a \neq \phi_a$  and/or feasible set  $\tilde{\mathcal{X}}_a \neq \mathcal{X}_a$  (and such that  $\tilde{\mathcal{X}}_a \subset \mathcal{X}_a$  in order to converge to a feasible profile for the LA, that can be realized in step 2).

In that way, the algorithm would still converge to  $\hat{\lambda}, \tilde{x_0}$  satisfying

$$ilde{oldsymbol{x}}_0 \in \operatorname*{argmin}_{oldsymbol{x}_0 \in \mathcal{X}_0} \phi_0(oldsymbol{x}_0) + oldsymbol{\lambda} A oldsymbol{x}_0.$$

If we assume that this cheating aggregator would not deviate from  $\tilde{\boldsymbol{x}}_a$  in the realization step (because the tax  $\tau^{\text{pen}}$  is large enough to discourage her), then the aggregator would benefit from cheating if  $\phi_a(\tilde{\boldsymbol{x}}_a) + \tilde{\boldsymbol{\lambda}}_a B_a \tilde{\boldsymbol{x}}_a < \phi_a(\boldsymbol{x}_a^*) + \boldsymbol{\lambda}_a^* B_a \boldsymbol{x}_a^*$ . The following counter-example shows an instance where this strict inequality holds, proving that, in general, the *DLMP*-based mechanism is not incentive compatible.

**Ex. 1.** Let us consider the toy example with only one node (one aggregator) linked to the root node 0 so that  $\mathcal{N} = \{0, 1\}$ , and two time periods  $\mathcal{T} = \{0, 1\}$ . Parameters and topology are given in Fig. 2. The operator has an energy cost of

$$\phi_0(\boldsymbol{p}_0) = (10|p_{01}| + 10p_{01}^2) + (3|p_{02}| + 2p_{01}^2),$$

while the LA has a preferred profile  $p_1^{\sharp} \stackrel{\Delta}{=} (1.5, 1.5)$  defining the cost

$$\phi_1(\boldsymbol{p}_1) \stackrel{\Delta}{=} \omega \left\| \boldsymbol{p}_1 - \boldsymbol{p}_1^{\sharp} \right\|_2^2 \text{ where } \omega \stackrel{\Delta}{=} 10.$$

We assume that the LA has an actual upper bound on the admissible power on time period t = 1 given by  $\overline{P}_{11} = 1.5$ . If the LA announces its true upper bound of 1.5, she will end up with a utility  $\phi_a = -33.57$  and a total cost of  $\phi_a + \mathfrak{P}_a = -15, 13$ . When cheating and announcing a lower upper bound  $\overline{P} = 1.0$ , her cost will be  $\phi_a + \tilde{\mathfrak{P}}_a = -32.49$  and total cost of -15.47, lower than the total cost when being truthfully. The two solutions are illustrated on Fig. 3 below.



Figure 2: A toy example where the aggregator benefits from cheating



Figure 3: Solution with Announced Power Upper bound : actual and cheated

#### 5.3 Comparison with VCG mechanism

A standard mechanism that achieves several desirable properties is the so-called Vickrey-Clarkes-Groves (VCG) mechanism [39, Sec. 10.6].

The framework considered in this paper is slightly different from the standard framework considered in mechanism design, because we have an additional entity, the DSO, that is not considered as an agent in the mechanism, but whose  $\cot \phi_0(\mathbf{x}_0)$  has to be considered in the objective. Indeed, instead of minimizing the social  $\cot \sum_{a \in \mathcal{A}} \phi_a(\mathbf{x}_a)$ , we minimize  $\Phi(\mathbf{x}_0, \mathbf{x}_{\mathcal{A}}) = \phi_0(\mathbf{x}_0) + \sum_{a \in \mathcal{A}} \phi_a(\mathbf{x}_a)$ . Because we just added the term  $\phi_0(\mathbf{x}_0)$  to the sum of agents' cost functions, the social choice function considered here is in the class of *affine maximizers* [39, Def. 10.5.4]. Let us denote by  $\mathbb{I}_{\mathcal{A}} \stackrel{\Delta}{=} (\phi_a, \mathcal{X}_a)_{a \in \mathcal{A}}$  the information transmitted by agents to the DSO. The VCG mechanism would compute:

$$\boldsymbol{x}(\mathbb{I}_{\mathcal{A}}) \stackrel{\Delta}{=} (\boldsymbol{x}_{0}^{*}, \boldsymbol{x}_{\mathcal{A}}^{*}) \in \arg\min\{\phi_{0}(\boldsymbol{x}_{0}) + \sum_{a \in \mathcal{A}} \phi_{a}(\boldsymbol{x}_{a}) \mid (1) \& \forall a, \boldsymbol{x}_{a} \in \mathcal{X}_{a}\}$$
(15)

$$\forall a \in \mathcal{A}, \mathfrak{P}_a \stackrel{\Delta}{=} -\tau_a^c(\mathbb{I}_{-a}) + \left[\phi_0(\boldsymbol{x}_0(\mathbb{I}_{\mathcal{A}})) + \sum_{a' \neq a} \phi_{a'}(\boldsymbol{x}(\mathbb{I}_{\mathcal{A}}))\right],$$
(16)

where  $\mathfrak{P}_a$  is the payment made by a to the operator,  $\mathbb{I}_{-a} \stackrel{\Delta}{=} (\phi_{a'}, \mathcal{X}_{a'})_{a' \neq a}$  and  $\tau_a^c(\mathbb{I}_{-a})$  refers to the so-called Clarke tax:

$$\tau_a^c(\mathbb{I}_{-a}) \stackrel{\Delta}{=} \phi_0\big(\boldsymbol{x}_0(\mathbb{I}_{-a})\big) + \sum_{a' \neq a} \phi_{a'}\big(\boldsymbol{x}_{a'}(\mathbb{I}_{-a})\big)$$
(17)

where 
$$(\boldsymbol{x}_0(\mathbb{I}_{-a}), \boldsymbol{x}_{-a}(\mathbb{I}_{-a})) \in \arg\min_{\boldsymbol{x}_0, \boldsymbol{x}_{-a}} \phi_0(\boldsymbol{x}_0) + \sum_{a' \neq a} \phi_{a'}(\boldsymbol{x}_{a'}).$$
 (18)

In our framework, the solutions  $(\boldsymbol{x}_0(\mathbb{I}_{-a}), \boldsymbol{x}_{-a}(\mathbb{I}_{-a}))$  solved the OPF problem without considering the loads of LA *a*, that is, having  $\boldsymbol{x}_a = 0$ , but conserving the same network structure, as the network variables are controlled by the DSO. In the toy example of Fig. 2 above, the VCG payment of the LA 1 is  $\mathfrak{P}_1 = \phi_0(\boldsymbol{x}_0^*)$ , because there is only one LA in the network, and the DSO costs would be zero without it.

The standard VCG mechanism is not decentralized: a priori, each agent a has to provide its complete information  $\mathbb{I}_a \stackrel{\Delta}{=} (\phi_a, \mathcal{X}_a)$  to the DSO. One can wonder if it is possible to reduce the amount of information provided, while keeping the structure of the VCG mechanism: indeed, using a decomposition algorithm, each agent a would only have to provide:

• the profile  $x_a^*$  (more precisely a sequence of profile responses  $(x_a^{*(s)})_s$  for an iterative algorithm as in Sec. 4, but the ultimate iteration, on which the algorithm converges, is the most important)

• the values  $\phi_a(\mathbf{x}(\mathbb{I}_{\mathcal{A}}))$  and  $\phi_a(\mathbf{x}(\mathbb{I}_{\mathcal{A}\setminus\{a'\}}))$  for each  $a' \neq a$ , to compute payment  $\pi_{a'}$  for each a').

Let us refer to this modified mechanism as Decentralized-VCG (DVCG). As the standard VCG, DVCG provides a mechanism that is efficient (in the sense that it provides an optimal solution of problem ( $\mathscr{P}^{\star}$ )), and incentive-compatible:

**Proposition 8.** Under the VCG mechanism, responding optimally to the DSO and announcing the true profile  $\mathbf{x}_a^*$  and true values  $\phi_a(\mathbf{x}(\mathbb{I}_A)), \phi_a(\mathbf{x}(\mathbb{I}_{A \setminus \{a'\}}))$  is a dominant strategy for each aggregator a.

Proof. As the cost values  $\phi_a(\boldsymbol{x}(\mathbb{I}_{\mathcal{A}})), \phi_a(\boldsymbol{x}(\mathbb{I}_{\mathcal{A}\setminus\{a'\}}))$  provided by a do not intervene in the payment  $\mathfrak{P}_a, a$  is indifferent to the values it provides, and has no interest in providing false values. Now imagine that a would lie during the decomposition algorithm, such that the final profiles obtained after convergence are  $\hat{\boldsymbol{x}} \neq \boldsymbol{x}^*$ . Then the final cost of a would be  $\phi_a(\hat{\boldsymbol{x}}_a) + \mathfrak{P}_a = \Phi(\hat{\boldsymbol{x}}) - \tau_a^c(\mathbb{I}_{-a}) \ge \Phi(\boldsymbol{x}^*) - \tau_a^c(\mathbb{I}_{-a})$ . Thus, a is better off announcing the truth, making the decomposition algorithm converging to the optimal solution  $\boldsymbol{x}^*$ .

However, DVCG (and furthermore VCG) would be impractical to implement in practice. A first problem is that, even if each agent is not impacted by the payments made by other agents, it may not be indifferent to it: in practical cases, if we consider several aggregators that are competing, each of them may have interest to provide false information to make payments of competitors larger. A second disadvantage is that, to compute Clarke taxes (17), the operator will have to solve  $|\mathcal{A}|$  additional decentralized problems.

## 6 Numerical Example

In this example, we consider the 15 buses network proposed by Papavasiliou [19], but with flexible active and reactive loads instead of fixed ones, and we consider a time set  $\mathcal{T} \stackrel{\Delta}{=} \{0, 1\}$ , of 2 time periods. The network structure can be observed on Fig. 4.

For each bus *n*, the parameters  $R_n, X_n, S_n, B_n$  are those of [19], given in Tab. 1, while parameters  $(\underline{P}_n, \overline{P}_n, E_n, \underline{Q}_n, \overline{Q}_n, \tau_n^c)_n$  are generated as follows. For each  $t \in \mathcal{T}$ , and with  $\hat{p}_n^c, \hat{q}_n^c$  denoting the fixed active and reactive load values considered in [19]:

- $\underline{P}_{n,t}$  is chosen randomly as  $\underline{P}_{n,t} \sim \mathcal{U}([0, \hat{p}_n^c])$ , where  $\mathcal{U}(I)$  denotes the uniform distribution on I;
- $\overline{P}_{n,t}$  is chosen randomly as  $\overline{P}_{n,t} \sim \mathcal{U}([\hat{p}_n^c, 2\hat{p}_n^c]);$
- $Q_{n,t}, \overline{Q}_{n,t}$  are chosen similarly considering  $\hat{q}_n^c$ ;
- $E_n$  is chosen as  $E_n \sim \mathcal{U}([\sum_t \underline{P}_{n,t}, \sum_t \overline{P}_{n,t}]);$
- $\tau_n^c$  is fixed as  $\tau_n^c \stackrel{\Delta}{=} \hat{q}_n^c / \hat{p}_n^c$ .

In this example, we consider that LAs are indifferent between consumption profiles as long as they are feasible, that is,  $\phi_a = 0$  for each  $a \in \mathcal{A}$ . Following [19], we consider that only the bus 11 has a renewable production, with  $\overline{P}_{11,t}^{p} \sim \mathcal{U}([0, 0.6])$  and  $\underline{\rho}^{p} \stackrel{\Delta}{=} 0$  (the renewable production is fully active). The bounds  $(\underline{V}_n, \overline{V}_n)$  are taken to 0.81 and 1.21 for each  $n \in \mathcal{N}$ , while  $V_0 = 1.0$ .

We consider the objective  $\Phi(\boldsymbol{x}) = \phi_0(\boldsymbol{x}_0) = \sum_{t \in \mathcal{T}} c_t(p_{0t}^p)$ , with cost functions chosen as follows: time period 0 has an expensive price given by  $c_0 : p \mapsto p + p^2$ , while time period 1 has a cheaper price given by  $c_1 : p \mapsto p$ .

| n  | $R_n$  | $X_n$  | $S_n$ | $\mathbb{E}[p_{n,t}]$ | $\mathbb{E}[q_{n,t}]$ | $B_n \cdot 10^3$ |
|----|--------|--------|-------|-----------------------|-----------------------|------------------|
| 0  | 0      | 0      | 0     | 0                     | 0                     | 0                |
| 1  | 0.001  | 0.12   | 2     | 0.7936                | 0.1855                | 1.1              |
| 2  | 0.0883 | 0.1262 | 0.256 | 0                     | 0                     | 2.8              |
| 3  | 0.1384 | 0.1978 | 0.256 | 0.0201                | 0.0084                | 2.4              |
| 4  | 0.0191 | 0.0273 | 0.256 | 0.0173                | 0.0043                | 0.4              |
| 5  | 0.0175 | 0.0251 | 0.256 | 0.0291                | 0.0073                | 0.8              |
| 6  | 0.0482 | 0.0689 | 0.256 | 0.0219                | 0.0055                | 0.6              |
| 7  | 0.0523 | 0.0747 | 0.256 | -0.1969               | 0.000                 | 0.6              |
| 8  | 0.0407 | 0.0582 | 0.256 | 0.0235                | 0.0059                | 1.2              |
| 9  | 0.01   | 0.0143 | 0.256 | 0.0229                | 0.0142                | 0.4              |
| 10 | 0.0241 | 0.0345 | 0.256 | 0.0217                | 0.0065                | 0.4              |
| 11 | 0.0103 | 0.0148 | 0.256 | 0.0132                | 0.0033                | 0.1              |
| 12 | 0.001  | 0.12   | 1     | 0.6219                | 0.1291                | 0.1              |
| 13 | 0.1559 | 0.1119 | 0.204 | 0.0014                | 0.0008                | 0.2              |
| 14 | 0.0953 | 0.0684 | 0.204 | 0.0224                | 0.0083                | 0.1              |

Table 1: Parameters for the 15 buses network [19]

The SOCP problem ( $\mathscr{P}^*$ ) is solved with the CvxOpt Python library [40] in 0.53s on a laptop with a processor of 2.6GHz. The solutions obtained are detailed in Tab. 2, while Fig. 4 shows the active flows directions and the saturated lines.



Figure 4: Directions of the active flows f at the optimal solution. Saturated lines are dashed.

The optimal production for node 11 is  $p_{11,0}^{\rm p} = 0.185$  and  $p_{11,1}^{\rm p} = 0.194$ , while the optimal costs obtained are  $c_0(p_{0,0}^{\rm p}) = 0.873$  and  $c_1(p_{0,1}^{\rm p}) = 1.299$ . Several comments are to be made.

First, one can observe that, even if the example does not satisfy the theoretical assumptions of Thm. 1 or Thm. 2, the SOCP relaxation is exact and gives the optimal solution of the original OPF problem.

Second, the solutions show that the active (and reactive) DLMPs obtained for each time period are closed to the DLMPs at the root node  $(\lambda_0^{\rm p}, \lambda_0^{\rm q})$ , except in two cases:

• for the branch composed of nodes 8,7,9,10,11, the active DLMPS are close to 0.0 on all time periods. This is due to the fact that the renewable production of node 11 at cost 0 and the negative load

| n                                                                                                                             | $\lambda_{n,0}^{\mathrm{p}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\lambda_{n,0}^{\mathrm{q}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $p_{n,0}^{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $q_{n,0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $f_{n,0}$                                                                                                                                                                             | $g_{n,0}$                                                                                                                                  | $\ell_{n,0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $v_{n,0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                                                                                                             | 2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                     | -                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1                                                                                                                             | 2.122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.427                                                                                                                                                                                | -0.188                                                                                                                                     | 0.229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $^{2}$                                                                                                                        | 2.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.199                                                                                                                                                                                 | -0.038                                                                                                                                     | 0.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3                                                                                                                             | 1.937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.205                                                                                                                                                                                 | -0.032                                                                                                                                     | 0.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4                                                                                                                             | 1.939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.019                                                                                                                                                                                | -0.003                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5                                                                                                                             | 1.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.014                                                                                                                                                                                | -0.002                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6                                                                                                                             | 1.942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.013                                                                                                                                                                                | -0.003                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8                                                                                                                             | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.256                                                                                                                                                                                 | -0.016                                                                                                                                     | 0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.131                                                                                                                                                                                 | 0.001                                                                                                                                      | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9                                                                                                                             | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.148                                                                                                                                                                                 | -0.011                                                                                                                                     | 0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10                                                                                                                            | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.151                                                                                                                                                                                 | -0.009                                                                                                                                     | 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.165                                                                                                                                                                                 | -0.005                                                                                                                                     | 0.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12                                                                                                                            | 2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.132                                                                                                                                                                                | -0.032                                                                                                                                     | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13                                                                                                                            | 2.137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.025                                                                                                                                                                                | -0.009                                                                                                                                     | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14                                                                                                                            | 2.146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.022                                                                                                                                                                                | -0.008                                                                                                                                     | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                               | ۱P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>C</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | £                                                                                                                                                                                     | ~                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{n}{2}$                                                                                                                 | $\lambda_{n,1}^{\mathrm{p}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\lambda_{n,1}^{\mathrm{q}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $p_{n,1}^c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $q_{n,1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $f_{n,1}$                                                                                                                                                                             | $g_{n,1}$                                                                                                                                  | $\ell_{n,1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $v_{n,1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\frac{n}{0}$                                                                                                                 | $\lambda_{n,1}^{\mathrm{p}}$<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\lambda_{n,1}^{\mathrm{q}}$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $p_{n,1}^c$<br>-1.299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $q_{n,1}$ -0.549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $f_{n,1}$                                                                                                                                                                             | $g_{n,1}$                                                                                                                                  | $\ell_{n,1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $v_{n,1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{c c} n \\ \hline 0 \\ 1 \\ 2 \end{array}$                                                                      | $\lambda_{n,1}^{p}$<br>1.0<br>1.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\lambda_{n,1}^{q}$<br>0.0<br>0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $p_{n,1}^c$<br>-1.299<br>1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $q_{n,1}$<br>-0.549<br>0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $f_{n,1}$                                                                                                                                                                             | $g_{n,1}$                                                                                                                                  | $\ell_{n,1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $v_{n,1}$<br>1<br>0.906<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c c} n \\ \hline 0 \\ 1 \\ 2 \\ \end{array}$                                                                   | $\frac{\lambda_{n,1}^{\rm p}}{1.0}\\1.002\\0.979\\0.042$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c c} \lambda_{n,1}^{\rm q} \\ \hline 0.0 \\ 0.004 \\ 0.021 \\ 0.044 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{r} p_{n,1}^c \\ -1.299 \\ 1.05 \\ 0.0 \\ 0.027 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $q_{n,1}$<br>-0.549<br>0.245<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $f_{n,1}$<br>-0.924<br>0.127                                                                                                                                                          | $g_{n,1}$<br>-0.321<br>-0.074                                                                                                              | $\ell_{n,1}$ - 1.057 0.024 0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $v_{n,1}$<br>1<br>0.906<br>0.909<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{c c}n\\\hline 0\\1\\2\\3\\\end{array}$                                                                         | $\begin{array}{c} \lambda_{n,1}^{\rm p} \\ \hline 1.0 \\ 1.002 \\ 0.979 \\ 0.942 \\ 0.045 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c c} \lambda_{n,1}^{\rm q} \\ \hline 0.0 \\ 0.004 \\ 0.021 \\ 0.046 \\ 0.047 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} p_{n,1}^c \\ -1.299 \\ 1.05 \\ 0.0 \\ 0.037 \\ 0.027 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $q_{n,1}$<br>-0.549<br>0.245<br>0.0<br>0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $f_{n,1}$<br>-0.924<br>0.127<br>0.131                                                                                                                                                 | $g_{n,1}$<br>-0.321<br>-0.074<br>-0.072                                                                                                    | $\begin{array}{c c} \ell_{n,1} \\ \hline \\ 1.057 \\ 0.024 \\ 0.024 \\ 0.024 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $v_{n,1}$<br>1<br>0.906<br>0.909<br>0.916<br>0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c c}n\\\hline 0\\1\\2\\3\\4\\5\end{array}$                                                                     | $\begin{array}{c} \lambda_{n,1}^{\rm p} \\ 1.0 \\ 1.002 \\ 0.979 \\ 0.942 \\ 0.945 \\ 0.947 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c c} \lambda_{n,1}^{\rm q} \\ \hline 0.0 \\ 0.004 \\ 0.021 \\ 0.046 \\ 0.047 \\ 0.040 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} p_{n,1}^c \\ -1.299 \\ 1.05 \\ 0.0 \\ 0.037 \\ 0.027 \\ 0.021 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $q_{n,1}$<br>-0.549<br>0.245<br>0.0<br>0.015<br>0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $f_{n,1}$<br>-0.924<br>0.127<br>0.131<br>-0.083                                                                                                                                       | $g_{n,1}$<br>-0.321<br>-0.074<br>-0.072<br>-0.019                                                                                          | $\begin{array}{c c} \ell_{n,1} \\ \hline \\ 1.057 \\ 0.024 \\ 0.024 \\ 0.008 \\ 0.004 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} v_{n,1} \\ 1 \\ 0.906 \\ 0.909 \\ 0.916 \\ 0.911 \\ 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c c}n\\0\\1\\2\\3\\4\\5\\c\end{array}$                                                                         | $\begin{array}{c} \lambda_{n,1}^{\rm p} \\ 1.0 \\ 1.002 \\ 0.979 \\ 0.942 \\ 0.945 \\ 0.947 \\ 0.947 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c c} \lambda_{n,1}^{\rm q} \\ \hline 0.0 \\ 0.004 \\ 0.021 \\ 0.046 \\ 0.047 \\ 0.048 \\ 0.048 \\ 0.040 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} p_{n,1}^c \\ -1.299 \\ 1.05 \\ 0.0 \\ 0.037 \\ 0.027 \\ 0.031 \\ 0.026 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} q_{n,1} \\ -0.549 \\ 0.245 \\ 0.0 \\ 0.015 \\ 0.007 \\ 0.008 \\ 0.003 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $f_{n,1}$<br>-0.924<br>0.127<br>0.131<br>-0.083<br>-0.057                                                                                                                             | $g_{n,1}$<br>-0.321<br>-0.074<br>-0.072<br>-0.019<br>-0.013                                                                                | $\begin{array}{c c} \ell_{n,1} \\ \hline \\ 1.057 \\ 0.024 \\ 0.024 \\ 0.008 \\ 0.004 \\ 0.004 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} v_{n,1} \\ \hline 1 \\ 0.906 \\ 0.909 \\ 0.916 \\ 0.911 \\ 0.909 \\ 0.905 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c c}n\\\hline 0\\1\\2\\3\\4\\5\\6\\\end{array}$                                                                | $\begin{array}{c} \lambda_{n,1}^{\rm p} \\ 1.0 \\ 1.002 \\ 0.979 \\ 0.942 \\ 0.945 \\ 0.947 \\ 0.95 \\ 0.95 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c c} \lambda_{n,1}^{\rm q} \\ \hline 0.0 \\ 0.004 \\ 0.021 \\ 0.046 \\ 0.047 \\ 0.048 \\ 0.048 \\ 0.048 \\ 0.157 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} p_{n,1}^c \\ -1.299 \\ 1.05 \\ 0.0 \\ 0.037 \\ 0.027 \\ 0.031 \\ 0.026 \\ 0.026 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $q_{n,1}$<br>-0.549<br>0.245<br>0.0<br>0.015<br>0.007<br>0.008<br>0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $f_{n,1}$<br>-0.924<br>0.127<br>0.131<br>-0.083<br>-0.057<br>-0.026<br>0.251                                                                                                          | $g_{n,1}$<br>-0.321<br>-0.074<br>-0.072<br>-0.019<br>-0.013<br>-0.006                                                                      | $\begin{array}{c c} \ell_{n,1} \\ \hline \\ 1.057 \\ 0.024 \\ 0.024 \\ 0.008 \\ 0.004 \\ 0.001 \\ 0.001 \\ 0.07 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} v_{n,1} \\ \hline 1 \\ 0.906 \\ 0.909 \\ 0.916 \\ 0.911 \\ 0.909 \\ 0.905 \\ 0.905 \\ 0.902 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c c} n \\ \hline 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 8 \\ 7 \end{array}$                                        | $\begin{array}{c} \lambda_{n,1}^{\rm p} \\ 1.0 \\ 1.002 \\ 0.979 \\ 0.942 \\ 0.945 \\ 0.947 \\ 0.95 \\ 0.004 \\ 0.901 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \lambda_{n,1}^{\rm q} \\ 0.0 \\ 0.004 \\ 0.021 \\ 0.046 \\ 0.047 \\ 0.048 \\ 0.048 \\ 0.176 \\ 0.176 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} p_{n,1}^c \\ -1.299 \\ 1.05 \\ 0.0 \\ 0.037 \\ 0.027 \\ 0.031 \\ 0.026 \\ 0.006 \\ 0.142 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} q_{n,1} \\ -0.549 \\ 0.245 \\ 0.0 \\ 0.015 \\ 0.007 \\ 0.008 \\ 0.006 \\ 0.001 \\ 0.0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $f_{n,1}$<br>-0.924<br>0.127<br>0.131<br>-0.083<br>-0.057<br>-0.026<br>0.254<br>0.142                                                                                                 | $g_{n,1}$<br>-0.321<br>-0.074<br>-0.072<br>-0.019<br>-0.013<br>-0.006<br>-0.035<br>-0.001                                                  | $\begin{array}{c c} \ell_{n,1} \\ \hline \\ 1.057 \\ 0.024 \\ 0.024 \\ 0.008 \\ 0.004 \\ 0.001 \\ 0.001 \\ 0.07 \\ 0.022 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} v_{n,1} \\ 1 \\ 0.906 \\ 0.909 \\ 0.916 \\ 0.911 \\ 0.909 \\ 0.905 \\ 0.932 \\ 0.932 \\ 0.947 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{c c} n \\ \hline 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 8 \\ 7 \\ 0 \end{array}$                                   | $\begin{array}{c} \lambda_{n,1}^{\rm p} \\ \hline 1.002 \\ 0.979 \\ 0.942 \\ 0.945 \\ 0.945 \\ 0.947 \\ 0.95 \\ 0.004 \\ -0.001 \\ 0.002 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \lambda_{n,1}^{\rm q} \\ 0.0 \\ 0.004 \\ 0.021 \\ 0.046 \\ 0.047 \\ 0.048 \\ 0.048 \\ 0.176 \\ 0.176 \\ 0.176 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} p_{n,1}^c \\ -1.299 \\ 1.05 \\ 0.0 \\ 0.037 \\ 0.027 \\ 0.031 \\ 0.026 \\ 0.006 \\ -0.143 \\ 0.026 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} q_{n,1} \\ -0.549 \\ 0.245 \\ 0.0 \\ 0.015 \\ 0.007 \\ 0.008 \\ 0.006 \\ 0.001 \\ 0.0 \\ 0.022 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $f_{n,1}$<br>-0.924<br>0.127<br>0.131<br>-0.083<br>-0.057<br>-0.026<br>0.254<br>0.143<br>0.143                                                                                        | $g_{n,1}$<br>-0.321<br>-0.074<br>-0.072<br>-0.019<br>-0.013<br>-0.006<br>-0.035<br>0.001                                                   | $\begin{array}{c c} \ell_{n,1} \\ \hline \\ 1.057 \\ 0.024 \\ 0.024 \\ 0.008 \\ 0.004 \\ 0.001 \\ 0.07 \\ 0.022 \\ 0.016 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} v_{n,1} \\ 1 \\ 0.906 \\ 0.909 \\ 0.916 \\ 0.911 \\ 0.909 \\ 0.905 \\ 0.932 \\ 0.947 \\ 0.922 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $n \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 8 \\ 7 \\ 9 \\ 10$                                                                   | $\begin{array}{c} \lambda_{n,1}^{\rm p} \\ 1.0 \\ 1.002 \\ 0.979 \\ 0.942 \\ 0.945 \\ 0.945 \\ 0.947 \\ 0.95 \\ 0.004 \\ -0.001 \\ 0.003 \\ 0.001 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \lambda_{n,1}^{\rm q} \\ 0.0 \\ 0.004 \\ 0.021 \\ 0.046 \\ 0.047 \\ 0.048 \\ 0.048 \\ 0.048 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} p_{n,1}^c \\ -1.299 \\ 1.05 \\ 0.0 \\ 0.037 \\ 0.027 \\ 0.031 \\ 0.026 \\ 0.006 \\ -0.143 \\ 0.036 \\ 0.036 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} q_{n,1} \\ -0.549 \\ 0.245 \\ 0.0 \\ 0.015 \\ 0.007 \\ 0.008 \\ 0.006 \\ 0.001 \\ 0.0 \\ 0.022 \\ 0.004 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $f_{n,1}$<br>-0.924<br>0.127<br>0.131<br>-0.083<br>-0.057<br>-0.026<br>0.254<br>0.143<br>0.118                                                                                        | $g_{n,1}$<br>-0.321<br>-0.074<br>-0.072<br>-0.019<br>-0.013<br>-0.006<br>-0.035<br>0.001<br>-0.033<br>0.011                                | $\begin{array}{c c} \ell_{n,1} \\ \hline \\ 1.057 \\ 0.024 \\ 0.024 \\ 0.008 \\ 0.004 \\ 0.001 \\ 0.07 \\ 0.022 \\ 0.016 \\ 0.025 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} v_{n,1} \\ 1 \\ 0.906 \\ 0.909 \\ 0.916 \\ 0.911 \\ 0.909 \\ 0.905 \\ 0.932 \\ 0.947 \\ 0.933 \\ 0.941 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $ \begin{array}{c} n \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 8 \\ 7 \\ 9 \\ 10 \\ 11 \end{array} $                              | $\begin{array}{c} \lambda_{n,1}^{\rm p} \\ 1.0 \\ 1.002 \\ 0.979 \\ 0.942 \\ 0.945 \\ 0.945 \\ 0.947 \\ 0.95 \\ 0.004 \\ -0.001 \\ 0.003 \\ 0.001 \\ 0.001 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \lambda_{n,1}^{q} \\ 0.0 \\ 0.004 \\ 0.021 \\ 0.046 \\ 0.047 \\ 0.048 \\ 0.048 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.1$ | $\begin{array}{c} p_{n,1}^c \\ -1.299 \\ 1.05 \\ 0.0 \\ 0.037 \\ 0.027 \\ 0.031 \\ 0.026 \\ 0.006 \\ -0.143 \\ 0.036 \\ 0.015 \\ 0.025 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $q_{n,1}$<br>-0.549<br>0.245<br>0.0<br>0.015<br>0.007<br>0.008<br>0.006<br>0.001<br>0.0<br>0.022<br>0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} f_{n,1} \\ \hline \\ -0.924 \\ 0.127 \\ 0.131 \\ -0.083 \\ -0.057 \\ -0.026 \\ 0.254 \\ 0.143 \\ 0.118 \\ 0.154 \\ 0.154 \end{array}$                               | $g_{n,1}$<br>-0.321<br>-0.074<br>-0.072<br>-0.019<br>-0.013<br>-0.006<br>-0.035<br>0.001<br>-0.033<br>-0.011                               | $\begin{array}{c c} \ell_{n,1} \\ \hline \\ 1.057 \\ 0.024 \\ 0.024 \\ 0.008 \\ 0.004 \\ 0.001 \\ 0.07 \\ 0.022 \\ 0.016 \\ 0.025 \\ 0.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} v_{n,1} \\ 1 \\ 0.906 \\ 0.909 \\ 0.916 \\ 0.911 \\ 0.909 \\ 0.905 \\ 0.932 \\ 0.947 \\ 0.933 \\ 0.947 \\ 0.9447 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.9442 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ 0.944 \\ $                    |
| $ \begin{array}{c} n \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 8 \\ 7 \\ 9 \\ 10 \\ 11 \\ 12 \end{array} $                        | $\begin{array}{c} \lambda_{n,1}^{\rm p} \\ 1.0 \\ 1.002 \\ 0.979 \\ 0.942 \\ 0.945 \\ 0.945 \\ 0.947 \\ 0.95 \\ 0.004 \\ -0.001 \\ 0.003 \\ 0.001 \\ 0.0 \\ 0.0 \\ 0.005 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \lambda_{n,1}^{q} \\ 0.0 \\ 0.004 \\ 0.021 \\ 0.046 \\ 0.047 \\ 0.048 \\ 0.048 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.255 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} p_{n,1}^c \\ -1.299 \\ 1.05 \\ 0.0 \\ 0.037 \\ 0.027 \\ 0.031 \\ 0.026 \\ 0.006 \\ -0.143 \\ 0.036 \\ 0.015 \\ 0.026 \\ 0.026 \\ 0.044 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} q_{n,1} \\ -0.549 \\ 0.245 \\ 0.0 \\ 0.015 \\ 0.007 \\ 0.008 \\ 0.006 \\ 0.001 \\ 0.0 \\ 0.022 \\ 0.004 \\ 0.006 \\ 0.075 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} f_{n,1} \\ \hline \\ -0.924 \\ 0.127 \\ 0.131 \\ -0.083 \\ -0.057 \\ -0.026 \\ 0.254 \\ 0.143 \\ 0.118 \\ 0.154 \\ 0.169 \\ 0.97 \end{array}$                       | $g_{n,1}$<br>-0.321<br>-0.074<br>-0.072<br>-0.019<br>-0.013<br>-0.006<br>-0.035<br>0.001<br>-0.033<br>-0.011<br>-0.006                     | $\begin{array}{c c} \ell_{n,1} \\ \hline \\ 1.057 \\ 0.024 \\ 0.024 \\ 0.008 \\ 0.004 \\ 0.001 \\ 0.07 \\ 0.022 \\ 0.016 \\ 0.025 \\ 0.03 \\ 0.15 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} v_{n,1} \\ \hline \\ 1 \\ 0.906 \\ 0.909 \\ 0.916 \\ 0.911 \\ 0.909 \\ 0.905 \\ 0.932 \\ 0.947 \\ 0.933 \\ 0.94 \\ 0.943 \\ 0.943 \\ 0.974 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.973 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 \\ 0.974 $ |
| $ \begin{array}{c} n \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 8 \\ 7 \\ 9 \\ 10 \\ 11 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$ | $\begin{array}{c} \lambda_{n,1}^{\rm p} \\ 1.0 \\ 1.002 \\ 0.979 \\ 0.942 \\ 0.945 \\ 0.945 \\ 0.947 \\ 0.95 \\ 0.004 \\ -0.001 \\ 0.003 \\ 0.001 \\ 0.0 \\ 2.008 \\ 0.001 \\ 0.0 \\ 2.008 \\ 0.001 \\ 0.0 \\ 0.003 \\ 0.001 \\ 0.0 \\ 0.003 \\ 0.001 \\ 0.0 \\ 0.003 \\ 0.001 \\ 0.0 \\ 0.003 \\ 0.001 \\ 0.0 \\ 0.003 \\ 0.001 \\ 0.0 \\ 0.003 \\ 0.001 \\ 0.0 \\ 0.003 \\ 0.001 \\ 0.0 \\ 0.003 \\ 0.001 \\ 0.0 \\ 0.003 \\ 0.001 \\ 0.003 \\ 0.001 \\ 0.003 \\ 0.001 \\ 0.003 \\ 0.003 \\ 0.001 \\ 0.003 \\ 0.003 \\ 0.001 \\ 0.003 \\ 0.003 \\ 0.001 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.001 \\ 0.003 \\ 0.003 \\ 0.001 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.001 \\ 0.003 \\ 0.003 \\ 0.001 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\$ | $\begin{array}{c} \lambda_{n,1}^{q} \\ 0.0 \\ 0.004 \\ 0.021 \\ 0.046 \\ 0.047 \\ 0.048 \\ 0.048 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.272 \\ 0.2$ | $\begin{array}{c} p_{n,1}^c \\ -1.299 \\ 1.05 \\ 0.0 \\ 0.037 \\ 0.027 \\ 0.031 \\ 0.026 \\ 0.006 \\ -0.143 \\ 0.036 \\ 0.015 \\ 0.026 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.342 \\ 0.34$ | $\begin{array}{c} q_{n,1} \\ -0.549 \\ 0.245 \\ 0.0 \\ 0.015 \\ 0.007 \\ 0.008 \\ 0.006 \\ 0.001 \\ 0.0 \\ 0.022 \\ 0.004 \\ 0.006 \\ 0.071 \\ 0.021 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} f_{n,1} \\ \hline \\ -0.924 \\ 0.127 \\ 0.131 \\ -0.083 \\ -0.057 \\ -0.026 \\ 0.254 \\ 0.143 \\ 0.143 \\ 0.118 \\ 0.154 \\ 0.169 \\ -0.374 \\ -0.324 \end{array}$  | $g_{n,1}$<br>-0.321<br>-0.074<br>-0.072<br>-0.019<br>-0.013<br>-0.006<br>-0.035<br>0.001<br>-0.033<br>-0.011<br>-0.006<br>-0.083<br>0.012  | $\begin{array}{c c} \ell_{n,1} \\ \hline \\ 1.057 \\ 0.024 \\ 0.024 \\ 0.008 \\ 0.004 \\ 0.001 \\ 0.07 \\ 0.022 \\ 0.016 \\ 0.025 \\ 0.03 \\ 0.15 \\ 0.051 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} v_{n,1} \\ \hline \\ 1 \\ 0.906 \\ 0.909 \\ 0.916 \\ 0.911 \\ 0.909 \\ 0.905 \\ 0.932 \\ 0.947 \\ 0.933 \\ 0.94 \\ 0.943 \\ 0.943 \\ 0.977 \\ 0.937 \\ 0.943 \\ 0.977 \\ 0.933 \\ 0.943 \\ 0.977 \\ 0.933 \\ 0.943 \\ 0.977 \\ 0.933 \\ 0.943 \\ 0.977 \\ 0.933 \\ 0.943 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.943 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.943 \\ 0.977 \\ 0.933 \\ 0.943 \\ 0.977 \\ 0.933 \\ 0.943 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.943 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.933 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 \\ 0.977 $ |
| $\begin{array}{c} n \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 8 \\ 7 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \end{array}$              | $\begin{array}{c} \lambda_{n,1}^{\rm p} \\ 1.0 \\ 1.002 \\ 0.979 \\ 0.942 \\ 0.945 \\ 0.945 \\ 0.947 \\ 0.95 \\ 0.004 \\ -0.001 \\ 0.003 \\ 0.001 \\ 0.0 \\ 2.008 \\ 2.031 \\ 0.031 \\ 0.03 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \lambda_{n,1}^{q} \\ 0.0 \\ 0.004 \\ 0.021 \\ 0.046 \\ 0.047 \\ 0.048 \\ 0.048 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.176 \\ 0.272 \\ 0.281 \\ 0.281 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} p_{a,1}^c \\ -1.299 \\ 1.05 \\ 0.0 \\ 0.037 \\ 0.027 \\ 0.031 \\ 0.026 \\ 0.006 \\ -0.143 \\ 0.036 \\ 0.015 \\ 0.026 \\ 0.342 \\ 0.002 \\ 0.002 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} q_{n,1} \\ \hline q_{n,1} \\ 0.549 \\ 0.245 \\ 0.0 \\ 0.015 \\ 0.007 \\ 0.008 \\ 0.006 \\ 0.001 \\ 0.0 \\ 0.022 \\ 0.004 \\ 0.006 \\ 0.071 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001$ | $\begin{array}{c} f_{n,1} \\ \hline \\ -0.924 \\ 0.127 \\ 0.131 \\ -0.083 \\ -0.057 \\ -0.026 \\ 0.254 \\ 0.143 \\ 0.118 \\ 0.154 \\ 0.169 \\ -0.374 \\ -0.032 \\ -0.032 \end{array}$ | $g_{n,1}$<br>-0.321<br>-0.074<br>-0.072<br>-0.019<br>-0.013<br>-0.006<br>-0.035<br>0.001<br>-0.033<br>-0.011<br>-0.006<br>-0.083<br>-0.012 | $\begin{array}{c c} \ell_{n,1} \\ \hline \\ 1.057 \\ 0.024 \\ 0.024 \\ 0.008 \\ 0.004 \\ 0.001 \\ 0.07 \\ 0.022 \\ 0.016 \\ 0.025 \\ 0.03 \\ 0.15 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.$ | $\begin{array}{c} v_{n,1} \\ 1 \\ 0.906 \\ 0.909 \\ 0.916 \\ 0.911 \\ 0.909 \\ 0.905 \\ 0.932 \\ 0.947 \\ 0.933 \\ 0.94 \\ 0.943 \\ 0.977 \\ 0.965 \\ 0.965 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Table 2: Results of the OPF for the 15-bus network for time periods t=0 (*above*) and t=1 (*below*).

of node 7, which together fully compensate the demand on this branch. The energy left is exported to the remaining nodes of the network up to the saturation of the line (3,8). This saturation creates an important difference of the DLMPs between one part of the network and the other. The DLMPs here give incentives for the nodes to either decrease production or increase consumption as much as possible, in order to release the saturation of line (3,8).

• On the contrary, the active DLMPs on the branch composed of nodes (12, 13, 14) on time period t = 1 are twice as large as the other nodes. Again, this is explained by the saturation of line (0, 12). Because of the cheaper price on time period 1, LAs are encouraged to move the flexible demand onto this period, which results in the congestion of line (0, 12). Here, the DLMPs counterbalance this price difference and give incentives to decrease consumption on t = 1 for nodes 12, 13, 14 in order to stay within the line capacity.

Third, the DLMP for node 7 and t = 1 is strictly negative: at this time period, the (negative) consumption for this node is at its upper bound  $p_{7,1} = \overline{P}_{7,1} = -0.143$ . The negative DLMP shows that the system will be better off if less power was injected by node 7. Interestingly, this case shows that, in some specific cases, DLMPs can be negative, even if we consider an increasing cost function  $\phi_0$ .

| Agg. | Nodes             | DLMP payment | VCG payment |
|------|-------------------|--------------|-------------|
| 1    | [1, 2, 3]         | 2.464        | 2.04        |
| 2    | [4, 5, 6, 12, 13] | 0.693        | 0.675       |
| 3    | [8, 7, 14]        | 0.077        | -0.007      |
| 4    | [9, 10]           | 0.006        | 0.004       |
| 5    | [11]              | 0.002        | -0.115      |

Table 3: Comparison of DLMP payments and VCG payments

Tab. 3 shows the difference between the DLMP payments of each aggregator a, and its VCG payments, given in Sec. 5.3. It is interesting to observe that DLMP payments remain close to VCG payments. We also observe on this example that the DLMP payment of each aggregator is always larger than the VCG payment. This inequality was proved to hold systematically in [29] in a much simpler framework (without network constraints and power upper bounds). Extending it in the framework of this paper would be an interesting avenue.



Figure 5: Convergence of PDGS (Algo. 3) and ADMM (Algo. 1). In spite of other advantages, PDGS is very slow to converge after a few iterations.

In Fig. 5, we compare the convergence of PDGS (Algo. 3) and ADMM (Algo. 1). For PDGS in this example, infeasibility of the DSO subproblem (see Algo. 3) only appears on iterations 1,2,12 and, ultimately, 19: the DSO subproblem is always feasible afterwards. PDGS is very slow to converge: as opposed to ADMM which needed 60 iterations (executed in 21.41 seconds in our configuration) to converge with an error of less than  $10^{-4}$  on primal feasibility (which is equal to the primal feasibility error  $\rho(A_0 \boldsymbol{x}_0^{(k+1)} + B \boldsymbol{x}_A^{(k+1)} - \boldsymbol{b})$ ) and objective, PDGS is still more than  $10^{-3}$  away from the optimal objective cost after 1000 iterations (executed in 364.23 seconds in our configuration). Although a parallel implementation could save execution time (it is possible to solve all LAs' problems in parallel, and to solve all time periods problems in parallel in the DSO's problem), it could be necessary to rely on ADMM rather than on PDGS in practice, for a larger network and a larger number of time periods.

A possibility for the DSO could be to rely on the two algorithms: considering the last solutions of the LAs for some iterations of ADMM, and then applying PDGS until reaching primal feasibility.

Improving the convergence of PDGS, for instance by adding a regularizing term in the subproblems, could also be an avenue for further research.

# Conclusion

We proposed a coordination procedure for aggregators operating on a distribution network, which respects the decentralized structure of decisions and information. This procedure enables to compute decentralized decisions satisfying AC network constraints and leading to an optimal grid operation from the system operator point of view.

Several directions of research are interesting for extending this work. One could study the tractability and the limits of the proposed procedure for large-scale instances, considering networks with a large number of nodes and/or a large set of time periods.

Second, an interesting but complex extension to the proposed model would be to consider a strategic and game-theoretic framework in which aggregators are subject to the DSO incentives, but are also price-makers on an electricity market.

# Acknowledgments

The author sincerely thanks Stéphane Gaubert, Nadia Oudjane, Olivier Beaude and Alejandro Jofré for precious discussions and insightful comments.

# References

- [1] P. Siano, "Demand response and smart grids a survey," Renew. Sust. Energ. Rev., vol. 30, pp. 461–478, 2014.
- [2] L. Gkatzikis, I. Koutsopoulos, and T. Salonidis, "The role of aggregators in smart grid demand response markets," *IEEE J. Sel. Areas Commun.*, vol. 31, no. 7, pp. 1247–1257, 2013.
- [3] J. Lavaei and S. H. Low, "Zero duality gap in optimal power flow problem," *IEEE Trans. Pow. Sys.*, vol. 27, no. 1, pp. 92–107, 2012.
- [4] S. Sojoudi and J. Lavaei, "Exactness of semidefinite relaxations for nonlinear optimization problems with underlying graph structure," SIAM J. Optim., vol. 24, no. 4, pp. 1746–1778, 2014.
- [5] M. Baradar, M. R. Hesamzadeh, and M. Ghandhari, "Second-order cone programming for optimal power flow in vsc-type ac-dc grids," *IEEE Trans. Pow. Sys.*, vol. 28, no. 4, pp. 4282–4291, 2013.
- [6] M. Farivar and S. H. Low, "Branch flow model: Relaxations and convexification Part I," IEEE Trans. Pow. Sys., vol. 28, no. 3, pp. 2554–2564, 2013.
- [7] B. Kocuk, S. S. Dey, and X. A. Sun, "Strong socp relaxations for the optimal power flow problem," Operations Research, 2016.
- [8] B. Subhonmesh, S. H. Low, and K. M. Chandy, "Equivalence of branch flow and bus injection models," in 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2012, pp. 1893–1899.
- [9] F. Zohrizadeh, C. Josz, M. Jin, R. Madani, J. Lavaei, and S. Sojoudi, "A survey on conic relaxations of optimal power flow problem," *European journal of operational research*, 2020.
- [10] S. Boyd and L. Vandenberghe, *Convex optimization*. Cambridge university press, 2004.
- [11] L. Gan, N. Li, U. Topcu, and S. H. Low, "Exact convex relaxation of optimal power flow in radial networks," *IEEE Trans. Autom. Control*, vol. 60, no. 1, pp. 72–87, 2014.
- [12] N. Gatsis and G. B. Giannakis, "Decomposition algorithms for market clearing with large-scale demand response," *IEEE Transactions on Smart Grid*, vol. 4, no. 4, pp. 1976–1987, 2013.

- [13] H. Le Cadre, I. Mezghani, and A. Papavasiliou, "A game-theoretic analysis of transmission-distribution system operator coordination," *European Journal of Operational Research*, vol. 274, no. 1, pp. 317–339, 2019.
- [14] R. Li, Q. Wu, and S. S. Oren, "Distribution locational marginal pricing for optimal electric vehicle charging management," *IEEE Trans. Pow. Sys.*, vol. 29, no. 1, pp. 203–211, 2013.
- [15] P. Scott, D. Gordon, E. Franklin, L. Jones, and S. Thiébaux, "Network-aware coordination of residential distributed energy resources," *IEEE Transactions on Smart Grid*, vol. 10, no. 6, pp. 6528–6537, 2019.
- [16] S. Mhanna, A. C. Chapman, and G. Verbič, "Component-based dual decomposition methods for the opf problem," Sustainable Energy, Grids and Networks, vol. 16, pp. 91–110, 2018.
- [17] S. Huang, Q. Wu, S. S. Oren, R. Li, and Z. Liu, "Distribution locational marginal pricing through quadratic programming for congestion management in distribution networks," *IEEE Trans. Pow. Sys.*, vol. 30, no. 4, pp. 2170–2178, July 2015.
- [18] S. Huang and Q. Wu, "Dynamic tariff-subsidy method for pv and v2g congestion management in distribution networks," *IEEE Transactions on Smart Grid*, vol. 10, no. 5, pp. 5851–5860, 2019.
- [19] A. Papavasiliou, "Analysis of distribution locational marginal prices," *IEEE Trans. Smart Grid*, pp. 1–1, 2017.
- [20] Q. Peng and S. H. Low, "Distributed optimal power flow algorithm for radial networks, i: Balanced single phase case," *IEEE Trans. Smart Grid*, vol. 9, no. 1, pp. 111–121, 2016.
- [21] W. Liu, Q. Wu, F. Wen, and J. Østergaard, "Day-ahead congestion management in distribution systems through household demand response and distribution congestion prices," *IEEE Trans. Smart Grid*, vol. 5, no. 6, pp. 2739–2747, 2014.
- [22] C. Lin, W. Wu, and M. Shahidehpour, "Decentralized ac optimal power flow for integrated transmission and distribution grids," *IEEE Trans. Smart Grid*, pp. 1–1, 2019.
- [23] L. Bai, J. Wang, C. Wang, C. Chen, and F. Li, "Distribution locational marginal pricing (dlmp) for congestion management and voltage support," *IEEE Trans. Pow. Sys.*, vol. 33, no. 4, pp. 4061–4073, 2017.
- [24] P. Jacquot, O. Beaude, S. Gaubert, and N. Oudjane, "Analysis and implementation of an hourly billing mechanism for demand response management," *IEEE Trans. Smart Grid*, vol. 10, no. 4, pp. 4265–4278, 7 2019.
- [25] A.-H. Mohsenian-Rad, V. W. Wong, J. Jatskevich, R. Schober, and A. Leon-Garcia, "Autonomous demandside management based on game-theoretic energy consumption scheduling for the future smart grid," *IEEE Trans. Smart Grid*, vol. 1, pp. 320–331, 2010.
- [26] N. Li, L. Chen, and S. H. Low, "Optimal demand response based on utility maximization in power networks," in *Proc. IEEE PES General Meeting*. IEEE, 2011, pp. 1–8.
- [27] H. Chen, Y. Li, R. H. Louie, and B. Vucetic, "Autonomous demand side management based on energy consumption scheduling and instantaneous load billing: An aggregative game approach," *IEEE Trans. Smart Grid*, vol. 5, no. 4, pp. 1744–1754, 2014.
- [28] Z. Baharlouei and M. Hashemi, "Efficiency-fairness trade-off in privacy-preserving autonomous demand side management," *IEEE Trans. Smart Grid*, vol. 5, no. 2, pp. 799–808, 2014.
- [29] P. Samadi, H. Mohsenian-Rad, R. Schober, and V. W. Wong, "Advanced demand side management for the future smart grid using mechanism design," *IEEE Trans. Smart Grid*, vol. 3, no. 3, pp. 1170–1180, 2012.
- [30] F. L. Müller, J. Szabó, O. Sundström, and J. Lygeros, "Aggregation and disaggregation of energetic flexibility from distributed energy resources," *IEEE Trans. Smart Grid*, 2017.
- [31] M. Farivar, R. Neal, C. Clarke, and S. Low, "Optimal inverter VAR control in distribution systems with high PV penetration," in *Proc. IEEE PES General Meeting*. IEEE, 2012, pp. 1–7.

- [32] S. Sojoudi and J. Lavaei, "Semidefinite relaxations for nonlinear optimization problems," *INFORMS OS Today*, vol. 6, no. 1, pp. 20–29, 2016.
- [33] D. P. Palomar and M. Chiang, "A tutorial on decomposition methods for network utility maximization," *IEEE J. Sel. Areas Commun.*, vol. 24, no. 8, pp. 1439–1451, 2006.
- [34] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.
- [35] R. Glowinski and A. Marroco, "Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de dirichlet non linéaires," *ESAIM*, vol. 9, no. R2, pp. 41–76, 1975.
- [36] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical learning via the alternating direction method of multipliers. Now Publishers Inc, 2011.
- [37] J. Hofbauer and S. Sorin, "Best response dynamics for continuous zero-sum games," Discrete and Continuous Dynamical Systems Series B, vol. 6, no. 1, p. 215, 2006.
- [38] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic game theory. Cambridge University Press Cambridge, 2007, vol. 1.
- [39] Y. Shoham and K. Leyton-Brown, *Multiagent systems: Algorithmic, game-theoretic, and logical foundations*. Cambridge University Press, 2008.
- [40] M. S. Andersen, J. Dahl, and L. Vandenberghe, "Cvxopt: A python package for convex optimization, version 1.1. 6," Available at cvxopt. org, vol. 54, 2013.